These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 36326085)
1. High-resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. Schilling K; Zhai Y; Zhou Z; Zhou B; Brown E; Zhang X Elife; 2022 Nov; 11():. PubMed ID: 36326085 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Zhai Y; Schilling K; Wang T; El Khatib M; Vinogradov S; Brown EB; Zhang X Biomaterials; 2021 Sep; 276():121041. PubMed ID: 34343857 [TBL] [Abstract][Full Text] [Related]
3. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair. Huang C; Ness VP; Yang X; Chen H; Luo J; Brown EB; Zhang X J Bone Miner Res; 2015 Jul; 30(7):1217-30. PubMed ID: 25640220 [TBL] [Abstract][Full Text] [Related]
4. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy. Schilling K; Brown E; Zhang X Bone; 2022 Jan; 154():116257. PubMed ID: 34781049 [TBL] [Abstract][Full Text] [Related]
5. H Vessel Formation as a Marker for Enhanced Bone Healing in Irradiated Distraction Osteogenesis. Daniel M; Sheppard N; Carlos G; Nelson N; Donneys A; Buchman SR Semin Plast Surg; 2024 Feb; 38(1):31-38. PubMed ID: 38495069 [TBL] [Abstract][Full Text] [Related]
6. Intravital Imaging to Understand Spatiotemporal Regulation of Osteogenesis and Angiogenesis in Cranial Defect Repair and Regeneration. Zhang X Methods Mol Biol; 2018; 1842():229-239. PubMed ID: 30196414 [TBL] [Abstract][Full Text] [Related]
7. Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. Schilling K; El Khatib M; Plunkett S; Xue J; Xia Y; Vinogradov SA; Brown E; Zhang X ACS Appl Mater Interfaces; 2019 Sep; 11(37):33548-33558. PubMed ID: 31436082 [TBL] [Abstract][Full Text] [Related]
8. Vasoactive Intestinal Peptide Stimulates Bone Marrow-Mesenchymal Stem Cells Osteogenesis Differentiation by Activating Wnt/β-Catenin Signaling Pathway and Promotes Rat Skull Defect Repair. Shi L; Feng L; Zhu ML; Yang ZM; Wu TY; Xu J; Liu Y; Lin WP; Lo JHT; Zhang JF; Li G Stem Cells Dev; 2020 May; 29(10):655-666. PubMed ID: 32070222 [TBL] [Abstract][Full Text] [Related]
9. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Dirckx N; Van Hul M; Maes C Birth Defects Res C Embryo Today; 2013 Sep; 99(3):170-91. PubMed ID: 24078495 [TBL] [Abstract][Full Text] [Related]
10. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. Kim BS; Yang SS; You HK; Shin HI; Lee J J Tissue Eng Regen Med; 2018 Mar; 12(3):e1311-e1324. PubMed ID: 28714275 [TBL] [Abstract][Full Text] [Related]
11. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
12. Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts. Levi B; James AW; Nelson ER; Li S; Peng M; Commons GW; Lee M; Wu B; Longaker MT Stem Cells Dev; 2011 Feb; 20(2):243-57. PubMed ID: 20698749 [TBL] [Abstract][Full Text] [Related]
13. Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair. Chen K; Liao S; Li Y; Jiang H; Liu Y; Wang C; Kuek V; Kenny J; Li B; Huang Q; Hong J; Huang Y; Chim SM; Tickner J; Pavlos NJ; Zhao J; Liu Q; Qin A; Xu J Theranostics; 2021; 11(20):9738-9751. PubMed ID: 34815781 [No Abstract] [Full Text] [Related]
14. High resolution intravital photoacoustic microscopy reveals VEGF-induced bone regeneration in mouse tibia. Chen Q; Wang Z; Yang C; Li B; Ren X; Liu C; Xi L Bone; 2023 Feb; 167():116631. PubMed ID: 36435450 [TBL] [Abstract][Full Text] [Related]
15. Nanoscaled Bionic Periosteum Orchestrating the Osteogenic Microenvironment for Sequential Bone Regeneration. Li H; Wang H; Pan J; Li J; Zhang K; Duan W; Liang H; Chen K; Geng D; Shi Q; Yang H; Li B; Chen H ACS Appl Mater Interfaces; 2020 Aug; 12(33):36823-36836. PubMed ID: 32706234 [TBL] [Abstract][Full Text] [Related]
16. Novel Nanohydroxyapatite (nHAp)-Based Scaffold Doped with Iron Oxide Nanoparticles (IO), Functionalized with Small Non-Coding RNA (miR-21/124) Modulates Expression of Runt-Related Transcriptional Factor 2 and Osteopontin, Promoting Regeneration of Osteoporotic Bone in Bilateral Cranial Defects in a Senescence-Accelerated Mouse Model (SAM/P6). PART 2. Marycz K; Śmieszek A; Kornicka-Garbowska K; Pielok A; Janeczek M; Lipińska A; Nikodem A; Filipiak J; Sobierajska P; Nedelec JM; Wiglusz RJ Int J Nanomedicine; 2021; 16():6049-6065. PubMed ID: 34511905 [TBL] [Abstract][Full Text] [Related]
17. Construction of vascularized tissue-engineered bone with a double-cell sheet complex. Zhang H; Zhou Y; Zhang W; Wang K; Xu L; Ma H; Deng Y Acta Biomater; 2018 Sep; 77():212-227. PubMed ID: 30017924 [TBL] [Abstract][Full Text] [Related]
18. Lysophosphatidic acid enhanced the osteogenic and angiogenic capability of osteoblasts via LPA1/3 receptor. Chen X; Song Z; Chen R; Tan S; Huang C; Liu Y; Cheng B; Fu Q Connect Tissue Res; 2019 Mar; 60(2):85-94. PubMed ID: 29447019 [TBL] [Abstract][Full Text] [Related]
19. Tracking Strain-Specific Morphogenesis and Angiogenesis of Murine Calvaria with Large-Scale Optoacoustic and Ultrasound Microscopy. Li W; Liu YH; Estrada H; Rebling J; Reiss M; Galli S; Nombela-Arrieta C; Razansky D J Bone Miner Res; 2022 May; 37(5):1032-1043. PubMed ID: 35220594 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties. Carvalho MS; Cabral JM; da Silva CL; Vashishth D J Cell Biochem; 2019 Apr; 120(4):6555-6569. PubMed ID: 30362184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]