These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 36326120)

  • 1. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network.
    Jiang J; Fan JA
    Nano Lett; 2019 Aug; 19(8):5366-5372. PubMed ID: 31294997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces.
    Mall A; Patil A; Sethi A; Kumar A
    Sci Rep; 2020 Nov; 10(1):19427. PubMed ID: 33173073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of the arbitrary scattering angle based on all-dielectric transmissive Pancharatnam Berry phase coding metasurfaces in the visible range.
    Tian Y; Jing X; Yu H; Gan H; Li C; Hong Z
    Opt Express; 2020 Oct; 28(21):32107-32123. PubMed ID: 33115174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural networks enabled forward and inverse design of reconfigurable metasurfaces.
    Tanriover I; Hadibrata W; Scheuer J; Aydin K
    Opt Express; 2021 Aug; 29(17):27219-27227. PubMed ID: 34615142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility.
    Jahan T; Dash T; Arman SE; Inum R; Islam S; Jamal L; Yanik AA; Habib A
    Nanoscale; 2024 Sep; 16(35):16641-16651. PubMed ID: 39171500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband High-Efficiency Chiral Splitters and Holograms from Dielectric Nanoarc Metasurfaces.
    Wang D; Hwang Y; Dai Y; Si G; Wei S; Choi DY; Gómez DE; Mitchell A; Lin J; Yuan X
    Small; 2019 May; 15(20):e1900483. PubMed ID: 30985077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmissive Pancharatnam-Berry metasurfaces with stable amplitude and precise phase modulations using dartboard discretization configuration.
    Cheng G; Si L; Shen Q; Niu R; Yuan Q; Bao X; Sun H; Ding J
    Opt Express; 2023 Sep; 31(19):30815-30831. PubMed ID: 37710616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of metasurfaces: physics and applications.
    Chen HT; Taylor AJ; Yu N
    Rep Prog Phys; 2016 Jul; 79(7):076401. PubMed ID: 27308726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for accelerated all-dielectric metasurface design.
    Nadell CC; Huang B; Malof JM; Padilla WJ
    Opt Express; 2019 Sep; 27(20):27523-27535. PubMed ID: 31684518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural network enabled metasurface design for phase manipulation.
    Jiang L; Li X; Wu Q; Wang L; Gao L
    Opt Express; 2021 Jan; 29(2):2521-2528. PubMed ID: 33726445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning modeling approach for metasurfaces with high degrees of freedom.
    An S; Zheng B; Shalaginov MY; Tang H; Li H; Zhou L; Ding J; Agarwal AM; Rivero-Baleine C; Kang M; Richardson KA; Gu T; Hu J; Fowler C; Zhang H
    Opt Express; 2020 Oct; 28(21):31932-31942. PubMed ID: 33115157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fast Design Method of Anisotropic Dielectric Lens for Vortex Electromagnetic Wave Based on Deep Learning.
    Liang B; Zhang Y; Zhou Y; Liu W; Ni T; Wang A; Fan Y
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-to-End Diverse Metasurface Design and Evaluation Using an Invertible Neural Network.
    Wang Y; Yang Z; Hu P; Hossain S; Liu Z; Ou TH; Ye J; Wu W
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric chiral metasurfaces for enhanced circular dichroism spectroscopy at near infrared regime.
    Ali A; Khaliq HS; Asad A; Akbar J; Zubair M; Mehmood MQ; Massoud Y
    RSC Adv; 2023 Jul; 13(30):20958-20965. PubMed ID: 37448643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Wavefront Control with All-Dielectric Metasurfaces.
    Wang L; Kruk S; Koshelev K; Kravchenko I; Luther-Davies B; Kivshar Y
    Nano Lett; 2018 Jun; 18(6):3978-3984. PubMed ID: 29749743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fully Phase-Modulated Metasurface as An Energy-Controllable Circular Polarization Router.
    Yuan Y; Sun S; Chen Y; Zhang K; Ding X; Ratni B; Wu Q; Burokur SN; Qiu CW
    Adv Sci (Weinh); 2020 Sep; 7(18):2001437. PubMed ID: 32999848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based inverse design of microstructured materials for optical optimization and thermal radiation control.
    Sullivan J; Mirhashemi A; Lee J
    Sci Rep; 2023 May; 13(1):7382. PubMed ID: 37149649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse design of metasurfaces with customized transmission characteristics of frequency band based on generative adversarial networks.
    Wang HP; Cao DM; Pang XY; Zhang XH; Wang SY; Hou WY; Nie CC; Li YB
    Opt Express; 2023 Nov; 31(23):37763-37777. PubMed ID: 38017899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-Enhanced Deep Greedy Optimization Algorithm for the On-Demand Inverse Design of TMDC-Cavity Heterojunctions.
    Zhao Z; You J; Zhang J; Tang Y
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.