These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 36326192)
1. Cold acclimation threshold induction temperatures of switchgrass ecotypes grown under a long and short photoperiod. Willick IR; Lowry DB Physiol Plant; 2022 Nov; 174(6):e13812. PubMed ID: 36326192 [TBL] [Abstract][Full Text] [Related]
2. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Li C; Junttila O; Heino P; Palva ET Tree Physiol; 2003 May; 23(7):481-7. PubMed ID: 12670802 [TBL] [Abstract][Full Text] [Related]
3. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? Charrier G; Bonhomme M; Lacointe A; Améglio T Int J Biometeorol; 2011 Nov; 55(6):763-74. PubMed ID: 21805380 [TBL] [Abstract][Full Text] [Related]
4. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.). Bertrand A; Bipfubusa M; Claessens A; Rocher S; Castonguay Y Plant Sci; 2017 Nov; 264():122-128. PubMed ID: 28969792 [TBL] [Abstract][Full Text] [Related]
5. Differential responses of silver birch (Betula pendula) ecotypes to short-day photoperiod and low temperature. Li C; Welling A; Puhakainen T; Viherä-Aarnio A; Ernstsen A; Junttila O; Heino P; Palva ET Tree Physiol; 2005 Dec; 25(12):1563-9. PubMed ID: 16137942 [TBL] [Abstract][Full Text] [Related]
6. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ; Engelsberger WR; Hincha DK Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434 [TBL] [Abstract][Full Text] [Related]
7. Chilling and freezing stress in live oaks (Quercus section Virentes): intra- and inter-specific variation in PS II sensitivity corresponds to latitude of origin. Cavender-Bares J Photosynth Res; 2007; 94(2-3):437-53. PubMed ID: 17805986 [TBL] [Abstract][Full Text] [Related]
8. C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses. Sage RF; de Melo Peixoto M; Friesen P; Deen B J Exp Bot; 2015 Jul; 66(14):4195-212. PubMed ID: 25873658 [TBL] [Abstract][Full Text] [Related]
9. Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense). Dalmannsdottir S; Jørgensen M; Rapacz M; Østrem L; Larsen A; Rødven R; Rognli OA Physiol Plant; 2017 Jul; 160(3):266-281. PubMed ID: 28144950 [TBL] [Abstract][Full Text] [Related]
10. Switchgrass (Panicum virgatum L.) Genotypes Differ between Coastal Sites and Inland Road Corridors in the Northeastern US. Ecker G; Zalapa J; Auer C PLoS One; 2015; 10(6):e0130414. PubMed ID: 26125564 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Trait Loci for Freezing Tolerance in a Lowland x Upland Switchgrass Population. Poudel HP; Sanciangco MD; Kaeppler SM; Buell CR; Casler MD Front Plant Sci; 2019; 10():372. PubMed ID: 30984223 [TBL] [Abstract][Full Text] [Related]
12. Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae). Bascuñán-Godoy L; Sanhueza C; Cuba M; Zuñiga GE; Corcuera LJ; Bravo LA BMC Plant Biol; 2012 Jul; 12():114. PubMed ID: 22827966 [TBL] [Abstract][Full Text] [Related]
14. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Lee CM; Thomashow MF Proc Natl Acad Sci U S A; 2012 Sep; 109(37):15054-9. PubMed ID: 22927419 [TBL] [Abstract][Full Text] [Related]
15. Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Guy CL; Haskell D Plant Physiol; 1987 Jul; 84(3):872-8. PubMed ID: 16665536 [TBL] [Abstract][Full Text] [Related]
16. CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. Park S; Gilmour SJ; Grumet R; Thomashow MF PLoS One; 2018; 13(12):e0207723. PubMed ID: 30517145 [TBL] [Abstract][Full Text] [Related]
17. Evidence of cyclical light/dark-regulated expression of freezing tolerance in young winter wheat plants. Skinner DZ; Bellinger B; Hiscox W; Helms GL PLoS One; 2018; 13(6):e0198042. PubMed ID: 29912979 [TBL] [Abstract][Full Text] [Related]
18. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.). Bahri BA; Daverdin G; Xu X; Cheng JF; Barry KW; Brummer EC; Devos KM BMC Evol Biol; 2018 Jun; 18(1):91. PubMed ID: 29898656 [TBL] [Abstract][Full Text] [Related]
19. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. Chang CY; Bräutigam K; Hüner NPA; Ensminger I New Phytol; 2021 Jan; 229(2):675-691. PubMed ID: 32869329 [TBL] [Abstract][Full Text] [Related]
20. The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions. Rapacz M; Wolanin B; Hura K; Tyrka M Ann Bot; 2008 Apr; 101(5):689-99. PubMed ID: 18245808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]