These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36326527)

  • 1. Assessment of bimetallic Zn/Fe
    Priyadarshini I; Chowdhury A; Rao A; Roy B; Chattopadhyay P
    J Environ Manage; 2023 Jan; 325(Pt B):116596. PubMed ID: 36326527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils.
    Karthick A; Roy B; Chattopadhyay P
    J Environ Manage; 2019 Jun; 240():93-107. PubMed ID: 30928799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum conditions of zero-valent iron nanoparticle stabilized foam application for diesel-contaminated soil remediation involving three major soil types.
    Karthick A; Chattopadhyay P
    Environ Monit Assess; 2021 Aug; 193(9):611. PubMed ID: 34462822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil.
    Karthick A; Roy B; Chattopadhyay P
    J Environ Manage; 2019 Aug; 243():187-205. PubMed ID: 31096172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles.
    Vu KA; Mulligan CN
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of a biosurfactant foam/nanoparticle mixture for treatment of oil pollutants in soil.
    Vu KA; Mulligan CN
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):88618-88629. PubMed ID: 35834082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of oil-contaminated soil using Fe/Cu nanoparticles and biosurfactants.
    Vu KA; Mulligan CN
    Environ Technol; 2023 Sep; 44(22):3446-3458. PubMed ID: 35361056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of functional nanoparticle-stabilized surfactant foam in petroleum-contaminated soil remediation.
    Liu J; Li WY; Chen HX; Li SQ; Yang LH; Peng KM; Cai C; Huang XF
    J Hazard Mater; 2023 Feb; 443(Pt B):130267. PubMed ID: 36444047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation.
    Galdames A; Ruiz-Rubio L; Orueta M; Sánchez-Arzalluz M; Vilas-Vilela JL
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32796749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil washing in combination with electrochemical advanced oxidation for the remediation of synthetic soil heavily contaminated with diesel.
    Liu F; Oturan N; Zhang H; Oturan MA
    Chemosphere; 2020 Jun; 249():126176. PubMed ID: 32087453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier.
    Sun Y; Gao K; Zhang Y; Zou H
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28142-28151. PubMed ID: 29019041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of nanoscale zero-valent iron on hydraulic conductivity of a residual clayey soil and modeling of the filtration parameter.
    Reginatto C; Cecchin I; Salvagni Heineck K; Thomé A; Reddy KR
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9288-9296. PubMed ID: 31916159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles.
    Chen X; Yao X; Yu C; Su X; Shen C; Chen C; Huang R; Xu X
    Environ Sci Pollut Res Int; 2014 Apr; 21(7):5201-10. PubMed ID: 24390111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foam flushing with soil vapor extraction for enhanced treatment of diesel contaminated soils in a one-dimensional column.
    Liang C; Yang SY
    Chemosphere; 2021 Dec; 285():131471. PubMed ID: 34271463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemically reversible foam enhanced flushing for PAHs-contaminated soil: Stability of surfactant foam, effects of soil factors, and surfactant reversible recovery.
    Li Y; Hu J; Liu H; Zhou C; Tian S
    Chemosphere; 2020 Dec; 260():127645. PubMed ID: 32693262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design.
    Mnif I; Sahnoun R; Ellouze-Chaabouni S; Ghribi D
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):851-61. PubMed ID: 23818070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar.
    Zhang R; Zhang N; Fang Z
    Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of oxidant, activator, and surfactant on enhanced electrokinetic remediation of PAHs historically contaminated soil.
    Huang Q; Zhou M; Zhou J; Chu L; Cang L
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):88989-89001. PubMed ID: 35841503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil.
    Pei G; Zhu Y; Cai X; Shi W; Li H
    Chemosphere; 2017 Oct; 185():1112-1121. PubMed ID: 28772354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.