These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36326558)

  • 41. Suitability of Brahmi (
    Panda D; Barik JR; Barik J; Behera PK; Dash D
    Int J Phytoremediation; 2021; 23(1):72-79. PubMed ID: 32657139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of contamination by percolation of septic tank effluent through natural and amended soils.
    Cheung KC; Venkitachalam TH
    Environ Geochem Health; 2004; 26(2-3):157-68. PubMed ID: 15499771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosorption kinetics of heavy metals by leaf biomass of Jatropha curcas in single and multi-metal system.
    Rawat AP; Giri K; Rai JP
    Environ Monit Assess; 2014 Mar; 186(3):1679-87. PubMed ID: 24150716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals].
    Yang J; Wang QH; Wang Q; Xue J; Tian SL
    Huan Jing Ke Xue; 2008 Mar; 29(3):825-30. PubMed ID: 18649552
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neutron activation analysis of thermal power plant ash and surrounding area soils.
    Al-Masri MS; Haddad Kh; Alsomel N; Sarhil A
    Environ Monit Assess; 2015 Aug; 187(8):536. PubMed ID: 26220782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Elements availability in soil fertilized with pelletized fly ash and biosolids.
    Brännvall E; Wolters M; Sjöblom R; Kumpiene J
    J Environ Manage; 2015 Aug; 159():27-36. PubMed ID: 26042629
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phytoextraction of heavy metals after application of bottom ash and municipal sewage sludge considering the risk of environmental pollution.
    Antonkiewicz J; Kowalewska A; Mikołajczak S; Kołodziej B; Bryk M; Spychaj-Fabisiak E; Koliopoulos T; Babula J
    J Environ Manage; 2022 Mar; 306():114517. PubMed ID: 35051815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effects of stabilization treatment on migration and transformation of heavy metals in mineral waste residues].
    Zhao SH; Chen ZL; Zhang TP; Pan WB; Peng XC; Che R; Ou YJ; Lei GJ; Zhou D
    Huan Jing Ke Xue; 2014 Apr; 35(4):1548-54. PubMed ID: 24946616
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter. A greenhouse study.
    Kumar GP; Yadav SK; Thawale PR; Singh SK; Juwarkar AA
    Bioresour Technol; 2008 Apr; 99(6):2078-82. PubMed ID: 17482809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phytoremediation of bauxite wastewater potentiality by Jatropa curcas.
    Kristanti RA; Mardarveran P; Almaary KS; Elshikh MS; AbdelGawwad MR; Tang DKH
    Bioprocess Biosyst Eng; 2023 Mar; 46(3):373-379. PubMed ID: 35773493
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil.
    Ghavri SV; Singh RP
    J Environ Biol; 2012 Mar; 33(2):207-14. PubMed ID: 23033682
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phytoremediation of metals from fly ash through bacterial augmentation.
    Kumari B; Singh SN
    Ecotoxicology; 2011 Jan; 20(1):166-76. PubMed ID: 21080221
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influences of fly ash on stabilization for Cd in contaminated soils.
    Wang P; Li R; Guo D; Guo Z; Mahar A; Du J; Zhang Z
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):43505-43513. PubMed ID: 32592060
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.
    Singh JS; Pandey VC
    Ecotoxicol Environ Saf; 2013 Mar; 89():43-51. PubMed ID: 23260239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus.
    González-Chávez MD; Carrillo-González R; Hernández Godínez MI; Evangelista Lozano S
    Int J Phytoremediation; 2017 Feb; 19(2):174-182. PubMed ID: 27408989
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fly ash and zeolite decrease metal uptake but do not improve rice growth in paddy soils contaminated with Cu and Zn.
    Lee DS; Lim SS; Park HJ; Yang HI; Park SI; Kwak JH; Choi WJ
    Environ Int; 2019 Aug; 129():551-564. PubMed ID: 31170667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous separation of Fe & Al and extraction of Fe from waste coal fly ash: Altering the charge sequence of ions by electrolysis.
    Shi Y; Jiang KX; Zhang TA; Zhu XF
    Waste Manag; 2022 Jan; 137():50-60. PubMed ID: 34731680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of eco-friendly novel amendments for sustainable utilization of Fly ash based on growth performance, hormones, antioxidant, and heavy metal translocation in chickpea (Cicer arietinum L.) plant.
    Upadhyay SK; Ahmad M; Srivastava AK; Abhilash PC; Sharma B
    Chemosphere; 2021 Mar; 267():129216. PubMed ID: 33340884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effectiveness of various treatments in changing the nutrient status and bioavailability of risk elements in multi-element contaminated soil.
    García-Sánchez M; García-Romera I; Száková J; Kaplan L; Tlustoš P
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):14325-36. PubMed ID: 25976332
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Short-Term Effect of Fly Ash from Biomass Combustion on Spring Rape Plants Growth, Nutrient, and Trace Elements Accumulation, and Soil Properties.
    Szostek M; Szpunar-Krok E; Jańczak-Pieniążek M; Ilek A
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.