BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36326605)

  • 1. Representing Catalytic Mechanisms with Rule Composition.
    Andersen JL; Fagerberg R; Flamm C; Fontana W; Kolčák J; Laurent CVFP; Merkle D; Nøjgaard N
    J Chem Inf Model; 2022 Nov; 62(22):5513-5524. PubMed ID: 36326605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph transformation for enzymatic mechanisms.
    Andersen JL; Fagerberg R; Flamm C; Fontana W; Kolčák J; Laurent CVFP; Merkle D; Nøjgaard N
    Bioinformatics; 2021 Jul; 37(Suppl_1):i392-i400. PubMed ID: 34252947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RMechDB: A Public Database of Elementary Radical Reaction Steps.
    Tavakoli M; Chiu YTT; Baldi P; Carlton AM; Van Vranken D
    J Chem Inf Model; 2023 Feb; 63(4):1114-1123. PubMed ID: 36799778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PMechDB: A Public Database of Elementary Polar Reaction Steps.
    Tavakoli M; Miller RJ; Angel MC; Pfeiffer MA; Gutman ES; Mood AD; Van Vranken D; Baldi P
    J Chem Inf Model; 2024 Mar; 64(6):1975-1983. PubMed ID: 38483315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atom mapping with constraint programming.
    Mann M; Nahar F; Schnorr N; Backofen R; Stadler PF; Flamm C
    Algorithms Mol Biol; 2014; 9(1):23. PubMed ID: 25484913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of reaction organization patterns that naturally cluster enzymatic transformations.
    Vazquez-Hernandez C; Loza A; Peguero-Sanchez E; Segovia L; Gutierrez-Rios RM
    BMC Syst Biol; 2018 May; 12(1):63. PubMed ID: 29848336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design.
    Ni Z; Stine AE; Tyo KEJ; Broadbelt LJ
    Metab Eng; 2021 May; 65():79-87. PubMed ID: 33662575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heuristics-Guided Exploration of Reaction Mechanisms.
    Bergeler M; Simm GN; Proppe J; Reiher M
    J Chem Theory Comput; 2015 Dec; 11(12):5712-22. PubMed ID: 26642988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic transition states and transition state analog design.
    Schramm VL
    Annu Rev Biochem; 1998; 67():693-720. PubMed ID: 9759501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LIGAND database for enzymes, compounds and reactions.
    Goto S; Nishioka T; Kanehisa M
    Nucleic Acids Res; 1999 Jan; 27(1):377-9. PubMed ID: 9847234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EHreact: Extended Hasse Diagrams for the Extraction and Scoring of Enzymatic Reaction Templates.
    Heid E; Goldman S; Sankaranarayanan K; Coley CW; Flamm C; Green WH
    J Chem Inf Model; 2021 Oct; 61(10):4949-4961. PubMed ID: 34587449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic determination of reaction mappings and reaction center information. 1. The imaginary transition state energy approach.
    Körner R; Apostolakis J
    J Chem Inf Model; 2008 Jun; 48(6):1181-9. PubMed ID: 18533713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ti-Catalyzed and -Mediated Oxidative Amination Reactions.
    Tonks IA
    Acc Chem Res; 2021 Sep; 54(17):3476-3490. PubMed ID: 34420307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STON: exploring biological pathways using the SBGN standard and graph databases.
    Touré V; Mazein A; Waltemath D; Balaur I; Saqi M; Henkel R; Pellet J; Auffray C
    BMC Bioinformatics; 2016 Dec; 17(1):494. PubMed ID: 27919219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined Graph/Relational Database Management System for Calculated Chemical Reaction Pathway Data.
    Gimadiev T; Nugmanov R; Batyrshin D; Madzhidov T; Maeda S; Sidorov P; Varnek A
    J Chem Inf Model; 2021 Feb; 61(2):554-559. PubMed ID: 33502186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB.
    Parks JM; Guo H; Momany C; Liang L; Miller SM; Summers AO; Smith JC
    J Am Chem Soc; 2009 Sep; 131(37):13278-85. PubMed ID: 19719173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MACiE: a database of enzyme reaction mechanisms.
    Holliday GL; Bartlett GJ; Almonacid DE; O'Boyle NM; Murray-Rust P; Thornton JM; Mitchell JB
    Bioinformatics; 2005 Dec; 21(23):4315-6. PubMed ID: 16188925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions.
    Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA
    Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.