These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 36326838)
1. Recombineering using RecET-like recombinases from Xenorhabdus and its application in mining of natural products. Huang X; Sun Y; Liu S; Li Y; Li C; Sun Y; Ding X; Xia L; Hu Y; Hu S Appl Microbiol Biotechnol; 2022 Dec; 106(23):7857-7866. PubMed ID: 36326838 [TBL] [Abstract][Full Text] [Related]
2. A Practical Guide to Recombineering in Photorhabdus and Xenorhabdus. Yin J; Wang H; Li R; Ravichandran V; Bian X; Li A; Tu Q; Francis Stewart A; Fu J; Zhang Y Curr Top Microbiol Immunol; 2017; 402():195-213. PubMed ID: 28154939 [TBL] [Abstract][Full Text] [Related]
3. A new recombineering system for Photorhabdus and Xenorhabdus. Yin J; Zhu H; Xia L; Ding X; Hoffmann T; Hoffmann M; Bian X; Müller R; Fu J; Stewart AF; Zhang Y Nucleic Acids Res; 2015 Mar; 43(6):e36. PubMed ID: 25539914 [TBL] [Abstract][Full Text] [Related]
4. A novel tumor-targeting strain of Zhang C; Chen H; Hüttel S; Hu S; Zhang W; Ding X; Yin J; Yin Y; Müller R; Xia L; Zhang Y; Tu Q Front Bioeng Biotechnol; 2022; 10():984197. PubMed ID: 36159678 [No Abstract] [Full Text] [Related]
5. Screening a fosmid library of Xenorhabdus stockiae HN_xs01 reveals SrfABC toxin that exhibits both cytotoxicity and injectable insecticidal activity. Yang X; Hou X; Sun Y; Zhang G; Hu X; Xie Y; Mo X; Ding X; Xia L; Hu S J Invertebr Pathol; 2019 Oct; 167():107247. PubMed ID: 31521727 [TBL] [Abstract][Full Text] [Related]
6. Identification and functional analysis of potential prophage-derived recombinases for genome editing in Lactobacillus casei. Xin Y; Guo T; Mu Y; Kong J FEMS Microbiol Lett; 2017 Dec; 364(24):. PubMed ID: 29145601 [TBL] [Abstract][Full Text] [Related]
7. Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling. Rill A; Zhao L; Bode HB Microb Cell Fact; 2024 Apr; 23(1):98. PubMed ID: 38561780 [TBL] [Abstract][Full Text] [Related]
8. Development and application of an efficient recombineering system for Burkholderia glumae and Burkholderia plantarii. Li R; Shi H; Zhao X; Liu X; Duan Q; Song C; Chen H; Zheng W; Shen Q; Wang M; Wang X; Gong K; Yin J; Zhang Y; Li A; Fu J Microb Biotechnol; 2021 Jul; 14(4):1809-1826. PubMed ID: 34191386 [TBL] [Abstract][Full Text] [Related]
9. Discovery of an antitumor compound from xenorhabdus stockiae HN_xs01. Huang X; Tang Q; Liu S; Li C; Li Y; Sun Y; Ding X; Xia L; Hu S World J Microbiol Biotechnol; 2024 Feb; 40(3):101. PubMed ID: 38366186 [TBL] [Abstract][Full Text] [Related]
10. Identification of phage recombinase function unit in genus Corynebacterium. Chang Y; Wang Q; Su T; Qi Q Appl Microbiol Biotechnol; 2021 Jun; 105(12):5067-5075. PubMed ID: 34131780 [TBL] [Abstract][Full Text] [Related]
11. Recombineering-Mediated Genome Editing in Burkholderiales Strains. Wang X; Liu J; Zheng W; Zhang Y; Bian X Methods Mol Biol; 2022; 2479():21-36. PubMed ID: 35583730 [TBL] [Abstract][Full Text] [Related]
12. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette. Huang Y; Li L; Xie S; Zhao N; Han S; Lin Y; Zheng S Sci Rep; 2017 Aug; 7(1):7916. PubMed ID: 28801604 [TBL] [Abstract][Full Text] [Related]
13. Structure and biosynthesis of deoxy-polyamine in Xenorhabdus bovienii. Wenski SL; Berghaus N; Keller N; Bode HB J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33693901 [TBL] [Abstract][Full Text] [Related]
15. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Wang H; Li Z; Jia R; Hou Y; Yin J; Bian X; Li A; Müller R; Stewart AF; Fu J; Zhang Y Nat Protoc; 2016 Jul; 11(7):1175-90. PubMed ID: 27254463 [TBL] [Abstract][Full Text] [Related]
16. Optimizing recombineering in Corynebacterium glutamicum. Li C; Swofford CA; Rückert C; Sinskey AJ Biotechnol Bioeng; 2021 Jun; 118(6):2255-2264. PubMed ID: 33650120 [TBL] [Abstract][Full Text] [Related]
17. Recombineering for Genetic Engineering of Natural Product Biosynthetic Pathways. Abbasi MN; Fu J; Bian X; Wang H; Zhang Y; Li A Trends Biotechnol; 2020 Jul; 38(7):715-728. PubMed ID: 31973879 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of P2-type remnant prophage loci in Xenorhabdus bovienii and Xenorhabdus nematophila required for xenorhabdicin production. Morales-Soto N; Gaudriault S; Ogier JC; Thappeta KR; Forst S FEMS Microbiol Lett; 2012 Aug; 333(1):69-76. PubMed ID: 22612724 [TBL] [Abstract][Full Text] [Related]
19. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Wang Y; Fang X; An F; Wang G; Zhang X Microb Cell Fact; 2011 Nov; 10():98. PubMed ID: 22082189 [TBL] [Abstract][Full Text] [Related]
20. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species. Bisch G; Ogier JC; Médigue C; Rouy Z; Vincent S; Tailliez P; Givaudan A; Gaudriault S Genome Biol Evol; 2016 Jan; 8(1):148-60. PubMed ID: 26769959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]