These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36326839)

  • 1. Chitosan/starch beads as bioinoculants carrier: long-term survival of bacteria and plant growth promotion.
    Fernández M; Pagnussat LA; Borrajo MP; Perez Bravo JJ; Francois NJ; Creus CM
    Appl Microbiol Biotechnol; 2022 Dec; 106(23):7963-7972. PubMed ID: 36326839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azospirillum brasilense AbV5/6 encapsulation in dual-crosslinked beads based on cationic starch.
    Lima-Tenório MK; Furmam-Cherobim F; Karas PR; Hyeda D; Takahashi WY; Pinto Junior AS; Galvão CW; Tenório-Neto ET; Etto RM
    Carbohydr Polym; 2023 May; 308():120631. PubMed ID: 36813333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Bradyrhizobium and Azospirillum in alginate matrix for long time of storage maintains cell viability and interaction with peanut.
    Cesari AB; Paulucci NS; Yslas EI; Dardanelli MS
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):10145-10164. PubMed ID: 33025128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria.
    Perez JJ; Francois NJ; Maroniche GA; Borrajo MP; Pereyra MA; Creus CM
    Carbohydr Polym; 2018 Dec; 202():409-417. PubMed ID: 30287017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization and survival of Azospirillum brasilense Az39 in soybean leaves.
    Puente ML; Maroniche GA; Panepucci M; Sabio Y García J; García JE; Criado MV; Molina R; Cassán F
    Lett Appl Microbiol; 2021 May; 72(5):626-633. PubMed ID: 33354785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific Root Exudate Compounds Sensed by Dedicated Chemoreceptors Shape Azospirillum brasilense Chemotaxis in the Rhizosphere.
    O'Neal L; Vo L; Alexandre G
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators.
    Couillerot O; Combes-Meynet E; Pothier JF; Bellvert F; Challita E; Poirier MA; Rohr R; Comte G; Moënne-Loccoz Y; Prigent-Combaret C
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1694-1705. PubMed ID: 21273247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.
    Fibach-Paldi S; Burdman S; Okon Y
    FEMS Microbiol Lett; 2012 Jan; 326(2):99-108. PubMed ID: 22092983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays).
    Herschkovitz Y; Lerner A; Davidov Y; Rothballer M; Hartmann A; Okon Y; Jurkevitch E
    Microb Ecol; 2005 Aug; 50(2):277-88. PubMed ID: 16211327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization.
    Maroniche GA; Diaz PR; Borrajo MP; Valverde CF; Creus CM
    FEMS Microbiol Ecol; 2018 Dec; 94(12):. PubMed ID: 30299474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.
    Molina-Romero D; Baez A; Quintero-Hernández V; Castañeda-Lucio M; Fuentes-Ramírez LE; Bustillos-Cristales MDR; Rodríguez-Andrade O; Morales-García YE; Munive A; Muñoz-Rojas J
    PLoS One; 2017; 12(11):e0187913. PubMed ID: 29117218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through Azospirillum brasilense-Pseudomonas protegens co-cultivation.
    Pagnussat LA; Salcedo F; Maroniche G; Keel C; Valverde C; Creus CM
    FEMS Microbiol Lett; 2016 Oct; 363(20):. PubMed ID: 27742715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of alginate-based aggregate inoculants of Methylobacterium sp. and Azospirillum brasilense tested under in vitro conditions to promote plant growth.
    Joe MM; Saravanan VS; Islam MR; Sa T
    J Appl Microbiol; 2014 Feb; 116(2):408-23. PubMed ID: 24188110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.
    Palacios OA; Choix FJ; Bashan Y; de-Bashan LE
    Res Microbiol; 2016 Jun; 167(5):367-79. PubMed ID: 26924113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valorization of Lignin as an Immobilizing Agent for Bioinoculant Production using
    Tapia-Olivares VR; Vazquez-Bello EA; Aguilar-Garnica E; Escalante FME
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31861075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growth-promoting bacteria in agricultural systems.
    Marcelino PR; Milani KM; Mali S; Santos OJ; de Oliveira AL
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7323-38. PubMed ID: 27147530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants.
    Armendariz AL; Talano MA; Wevar Oller AL; Medina MI; Agostini E
    J Environ Sci (China); 2015 Jul; 33():203-10. PubMed ID: 26141894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR.
    Stets MI; Alqueres SM; Souza EM; Pedrosa Fde O; Schmid M; Hartmann A; Cruz LM
    Appl Environ Microbiol; 2015 Oct; 81(19):6700-9. PubMed ID: 26187960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots.
    Santos ARS; Etto RM; Furmam RW; Freitas DL; Santos KFDN; Souza EM; Pedrosa FO; Ayub RA; Steffens MBR; Galvão CW
    Plant Physiol Biochem; 2017 Sep; 118():422-426. PubMed ID: 28711791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize.
    Couillerot O; Poirier MA; Prigent-Combaret C; Mavingui P; Caballero-Mellado J; Moënne-Loccoz Y
    J Appl Microbiol; 2010 Aug; 109(2):528-538. PubMed ID: 20141548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.