These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 3632697)

  • 1. Near infra-red sensitivity of the eye of the crustacean Mysis relicta?
    Lindström M; Meyer-Rochow VB
    Biochem Biophys Res Commun; 1987 Sep; 147(2):747-52. PubMed ID: 3632697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The eye of the opossum shrimp Mysis relicta (Crustacea, Mysidae) contains two visual pigments located in different photoreceptor cells.
    Zak PP; Lindström M; Demchuk JV; Donner K; Ostrovsky MA
    Dokl Biol Sci; 2013 Mar; 449():68-72. PubMed ID: 23652429
    [No Abstract]   [Full Text] [Related]  

  • 3. Increasing the illumination slowly over several weeks protects against light damage in the eyes of the crustacean
    Viljanen MLM; Nevala NE; Calais-Granö CL; Lindström KMW; Donner K
    J Exp Biol; 2017 Aug; 220(Pt 15):2798-2808. PubMed ID: 28515237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye spectral sensitivity in fresh- and brackish-water populations of three glacial-relict Mysis species (Crustacea): physiology and genetics of differential tuning.
    Donner K; Zak P; Viljanen M; Lindström M; Feldman T; Ostrovsky M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Apr; 202(4):297-312. PubMed ID: 26984686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark-adaptation in the eyes of a lake and a sea population of opossum shrimp (Mysis relicta): retinoid isomer dynamics, rhodopsin regeneration, and recovery of light sensitivity.
    Feldman T; Yakovleva M; Viljanen M; Lindström M; Donner K; Ostrovsky M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Nov; 206(6):871-889. PubMed ID: 32880702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single and multiple visual systems in arthropods.
    Wald G
    J Gen Physiol; 1968 Feb; 51(2):125-56. PubMed ID: 5641632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral sensitivity of the barnacle, Balanus amphitrite.
    Stratten WP; Ogden TE
    J Gen Physiol; 1971 Apr; 57(4):435-47. PubMed ID: 4323488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral sensitivity studies on the visual system of the praying mantis, Tenodera sinensis.
    Sontag C
    J Gen Physiol; 1971 Jan; 57(1):93-112. PubMed ID: 5539340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage.
    Meyer-Rochow VB
    Zoolog Sci; 2001 Dec; 18(9):1175-97. PubMed ID: 11911074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual pigment absorbance and spectral sensitivity of the Mysis relicta species group (Crustacea, Mysida) in different light environments.
    Jokela-Määttä M; Pahlberg J; Lindström M; Zak PP; Porter M; Ostrovsky MA; Cronin TW; Donner K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Dec; 191(12):1087-97. PubMed ID: 16133501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microspectrophotometry of photoreceptor organelles from eyes of the prawn Palaemonetes.
    Goldsmith TH; Dizon AE; Fernandez HR
    Science; 1968 Aug; 161(3840):468-70. PubMed ID: 5659682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroretinogram characteristics and the spectral mechanisms of the median ocellus and the lateral eye in Limulus polyphemus.
    Chapman RM; Lall AB
    J Gen Physiol; 1967 Oct; 50(9):2267-87. PubMed ID: 6064151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The photoactivation energy of the visual pigment in two spectrally different populations of Mysis relicta (Crustacea, Mysida).
    Pahlberg J; Lindström M; Ala-Laurila P; Fyhrquist-Vanni N; Koskelainen A; Donner K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Sep; 191(9):837-44. PubMed ID: 16010556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increment sensitivity of the eye of Limulus.
    Danielson J
    Vision Res; 1970 Feb; 10(2):111-9. PubMed ID: 5440776
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrophysiological evidence for rod-like receptors in the gray squirrel, ground squirrel and prairie dog retinas.
    Green DG; Dowling JE
    J Comp Neurol; 1975 Feb; 159(4):461-72. PubMed ID: 1127140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypersensitivity in the anterior median eye of a jumping spider.
    Yamashita S; Tateda H
    J Exp Biol; 1976 Dec; 65(3):507-16. PubMed ID: 1018161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral versus central adaptation in the crustacean visual system.
    Glantz RM
    J Neurophysiol; 1971 Jul; 34(4):485-92. PubMed ID: 5114089
    [No Abstract]   [Full Text] [Related]  

  • 18. Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom.
    Meyer-Rochow VB
    J Insect Physiol; 1974 Mar; 20(3):573-89. PubMed ID: 4819574
    [No Abstract]   [Full Text] [Related]  

  • 19. Spectral sensitivity of the common prawn, Palaemonetes vulgaris.
    Wald G; Seldin EB
    J Gen Physiol; 1968 May; 51(5):694-700. PubMed ID: 5654406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral sensitivity of intracellular responses from visual cells in median ocellus of Limulus polyphemus.
    Lall AB
    Vision Res; 1970 Sep; 10(9):905-9. PubMed ID: 5492781
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.