These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3632705)

  • 21. Disparity in the effects of two N-methyl nicotinamides on poly(ADP-ribose) synthetase and macromolecular synthesis in hepatomas.
    Lea MA; Hu JJ; Grasso SV
    Cancer Biochem Biophys; 1985 Jun; 8(1):1-7. PubMed ID: 2992758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of tritiated thymidine incorporation in cultured cells by rat kidney extract.
    Klein K; Coetzee ML; Madhav R; Ove P
    J Natl Cancer Inst; 1979 Jun; 62(6):1557-64. PubMed ID: 155753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Polyamine oxidative deamination in hepatomas with varying growth rates].
    Siatkin SP; Berezov TT
    Vopr Med Khim; 1979; 25(5):611-7. PubMed ID: 115153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of linoleic and arachidonic acids as the factors in hyperlipemic blood that increase [3H]thymidine incorporation in hepatoma 7288CTC perfused in situ.
    Sauer LA; Dauchy RT
    Cancer Res; 1988 Jun; 48(11):3106-11. PubMed ID: 3130186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uptake and metabolism of free fatty acids by the Morris 7777 hepatoma and host rat liver.
    Morton RE; Waite M; King VL; Morris HP
    Lipids; 1982 Aug; 17(8):529-37. PubMed ID: 7132584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activities of some enzymes of pyrimidine and DNA synthesis in a rat transplantable hepatoma and human primary hepatomas, in cell lines derived from these tissues, and in human fetal liver.
    Cummins RR; Balinsky D
    Cancer Res; 1980 Apr; 40(4):1235-9. PubMed ID: 6244089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased concentration of thymidine kinase in rat hepatomas.
    Lai MH; Weber G
    Biochem Biophys Res Commun; 1983 Feb; 111(1):280-7. PubMed ID: 6830593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of a normal serum protein absent from hepatoma-bearing animals on cell cultures.
    Dolan ML; Coetzee ML; Spangler M; Ove P
    J Natl Cancer Inst; 1975 Jan; 54(1):163-9. PubMed ID: 163313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism for the antitumor and anticachectic effects of n-3 fatty acids.
    Sauer LA; Dauchy RT; Blask DE
    Cancer Res; 2000 Sep; 60(18):5289-95. PubMed ID: 11016660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 13-Hydroxyoctadecadienoic acid is the mitogenic signal for linoleic acid-dependent growth in rat hepatoma 7288CTC in vivo.
    Sauer LA; Dauchy RT; Blask DE; Armstrong BJ; Scalici S
    Cancer Res; 1999 Sep; 59(18):4688-92. PubMed ID: 10493526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decreased uptake of 14C-labeled dicarboxylic amino acids in rapidly growing hepatomas.
    Koch MR; Khalil FL; Lea MA
    Cancer Res; 1980 Nov; 40(11):4053-8. PubMed ID: 7471051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-irradiation and the incorporation of precursors for salvage and de novo synthesis of DNA in hepatomas and liver.
    Khalil FL; Lea MA
    Neoplasma; 1981; 28(2):171-7. PubMed ID: 7254433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino acid oxidation in the tumor-bearing rat.
    Paxton K; Ward LC; Wilce PA
    Cancer Biochem Biophys; 1988 May; 9(4):343-51. PubMed ID: 3395963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of extracellular Ca2+ and Mg2+ on nucleic acids and proteins syntheses by tumor and normal liver cells.
    Anghileri LJ; Heidbreder M
    Int J Clin Pharmacol Biopharm; 1978 Oct; 16(10):451-5. PubMed ID: 700906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manganese content and high-affinity transport in liver and hepatoma.
    Galeotti T; Palombini G; van Rossum GD
    Arch Biochem Biophys; 1995 Oct; 322(2):453-9. PubMed ID: 7574721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation of fatty acyl composition of mitochondrial and microsomal phospholipid with growth rate of rat hepatomas.
    Hartz JW; Morton RE; Waite MM; Morris HP
    Lab Invest; 1982 Jan; 46(1):73-8. PubMed ID: 7054591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in cyclic adenosine monophosphate-responsive element binding proteins in rat hepatomas.
    Kwast-Welfeld J; de Belle I; Walker PR; Isaacs RJ; Whitfield JF; Sikorska M
    Cancer Res; 1991 Jan; 51(2):528-35. PubMed ID: 1824683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uptake of 14C-labeled dicarboxylic amino acids in hepatocytes and hepatoma cells.
    Koch MR; Lea MA
    Cancer Res; 1981 Aug; 41(8):3065-70. PubMed ID: 7248963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of macromolecular synthesis in Morris hepatomas.
    Lea MA
    Adv Exp Med Biol; 1977 May 22-24; 92():289-305. PubMed ID: 205101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Are hepatomas a good target for suicide gene therapy? An experimental study in rats using retroviral-mediated transfer of thymidine kinase gene.
    Nagy H; Panis Y; Fabre M; Perrin H; Klatzmann D; Houssin D
    Surgery; 1998 Jan; 123(1):19-24. PubMed ID: 9457219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.