These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36327182)

  • 1. Online Identification of Nonlinear Systems With Separable Structure.
    Chen GY; Gan M; Chen L; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8695-8701. PubMed ID: 36327182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recursive Variable Projection Algorithm for a Class of Separable Nonlinear Models.
    Gan M; Guan Y; Chen GY; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2021 Nov; 32(11):4971-4982. PubMed ID: 33017297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified Gram-Schmidt Method-Based Variable Projection Algorithm for Separable Nonlinear Models.
    Chen GY; Gan M; Ding F; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2410-2418. PubMed ID: 30596588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On Some Separated Algorithms for Separable Nonlinear Least Squares Problems.
    Min Gan ; Chen CLP; Guang-Yong Chen ; Long Chen
    IEEE Trans Cybern; 2018 Oct; 48(10):2866-2874. PubMed ID: 28981436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.
    Kazemi M; Arefi MM
    ISA Trans; 2017 Mar; 67():382-388. PubMed ID: 27989529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient variable projection formulation for separable nonlinear least squares problems.
    Gan M; Li HX
    IEEE Trans Cybern; 2014 May; 44(5):707-11. PubMed ID: 23846514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separable least squares identification of nonlinear Hammerstein models: application to stretch reflex dynamics.
    Westwick DT; Kearney RE
    Ann Biomed Eng; 2001 Aug; 29(8):707-18. PubMed ID: 11556727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights Into Algorithms for Separable Nonlinear Least Squares Problems.
    Chen GY; Gan M; Wang S; Chen CLP
    IEEE Trans Image Process; 2021; 30():1207-1218. PubMed ID: 33315559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Alternating Identification Algorithm for a Class of Nonlinear Dynamical Systems.
    Zhang Y; Chai T; Wang D
    IEEE Trans Neural Netw Learn Syst; 2017 Jul; 28(7):1606-1617. PubMed ID: 27093711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kernel Correntropy Conjugate Gradient Algorithms Based on Half-Quadratic Optimization.
    Xiong K; Iu HHC; Wang S
    IEEE Trans Cybern; 2021 Nov; 51(11):5497-5510. PubMed ID: 31945006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training two-layered feedforward networks with variable projection method.
    Kim CT; Lee JJ
    IEEE Trans Neural Netw; 2008 Feb; 19(2):371-5. PubMed ID: 18269969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined genetic algorithm and multiple linear regression (GA-MLR) optimizer: Application to multi-exponential fluorescence decay surface.
    Fisz JJ
    J Phys Chem A; 2006 Dec; 110(48):12977-85. PubMed ID: 17134156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized separable parameter space techniques for fitting 1K-5K serial compartment models.
    Kadrmas DJ; Oktay MB
    Med Phys; 2013 Jul; 40(7):072502. PubMed ID: 23822451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kernel Mixture Correntropy Conjugate Gradient Algorithm for Time Series Prediction.
    Xue N; Luo X; Gao Y; Wang W; Wang L; Huang C; Zhao W
    Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A variable projection approach for efficient estimation of RBF-ARX model.
    Gan M; Li HX; Peng H
    IEEE Trans Cybern; 2015 Mar; 45(3):476-85. PubMed ID: 24988599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SGD-Based Adaptive NN Control Design for Uncertain Nonlinear Systems.
    Yang X; Zheng X; Gao H
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):5071-5083. PubMed ID: 29994566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage extended recursive gradient algorithm for locally linear RBF-based autoregressive models with colored noises.
    Zhou Y; Ding F; Yang E
    ISA Trans; 2022 Oct; 129(Pt B):284-294. PubMed ID: 35219454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient least angle regression for identification of linear-in-the-parameters models.
    Zhao W; Beach TH; Rezgui Y
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160775. PubMed ID: 28293140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separate block-based parameter estimation method for Hammerstein systems.
    Zhang S; Wang D; Liu F
    R Soc Open Sci; 2018 Jun; 5(6):172194. PubMed ID: 30110418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel multi-innovation gradient support vector machine regression method.
    Ma H; Ding F; Wang Y
    ISA Trans; 2022 Nov; 130():343-359. PubMed ID: 35354538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.