BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36327186)

  • 1. Learning Whole Heart Mesh Generation From Patient Images for Computational Simulations.
    Kong F; Shadden SC
    IEEE Trans Med Imaging; 2023 Feb; 42(2):533-545. PubMed ID: 36327186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep-learning approach for direct whole-heart mesh reconstruction.
    Kong F; Wilson N; Shadden S
    Med Image Anal; 2021 Dec; 74():102222. PubMed ID: 34543913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polygonal surface processing and mesh generation tools for the numerical simulation of the cardiac function.
    Fedele M; Quarteroni A
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3435. PubMed ID: 33415829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries.
    Lee CT; Laughlin JG; Angliviel de La Beaumelle N; Amaro RE; McCammon JA; Ramamoorthi R; Holst M; Rangamani P
    PLoS Comput Biol; 2020 Apr; 16(4):e1007756. PubMed ID: 32251448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From medical images to flow computations without user-generated meshes.
    Dillard SI; Mousel JA; Shrestha L; Raghavan ML; Vigmostad SC
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1057-83. PubMed ID: 24753504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-Specific Heart Geometry Modeling for Solid Biomechanics Using Deep Learning.
    Pak DH; Liu M; Kim T; Liang L; Caballero A; Onofrey J; Ahn SS; Xu Y; McKay R; Sun W; Gleason R; Duncan JS
    IEEE Trans Med Imaging; 2024 Jan; 43(1):203-215. PubMed ID: 37432807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semi-automatic Pipeline for Generation of Large Cohorts of Four-Chamber Heart Meshes.
    Strocchi M; Rodero C; Roney CH; Mendonca Costa C; Plank G; Lamata P; Niederer SA
    Methods Mol Biol; 2024; 2735():117-127. PubMed ID: 38038846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.
    van Dam PM; Gordon JP; Laks MM; Boyle NG
    J Electrocardiol; 2015; 48(6):959-65. PubMed ID: 26381797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automating Model Generation for Image-Based Cardiac Flow Simulation.
    Kong F; Shadden SC
    J Biomech Eng; 2020 Nov; 142(11):. PubMed ID: 32766785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated 3D Whole-Heart Mesh Reconstruction From 2D Cine MR Slices Using Statistical Shape Model.
    Banerjee A; Zacur E; Choudhury RP; Grau V
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1702-1706. PubMed ID: 36086304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LinFlo-Net: A Two-Stage Deep Learning Method to Generate Simulation Ready Meshes of the Heart.
    Narayanan A; Kong F; Shadden S
    J Biomech Eng; 2024 Jul; 146(7):. PubMed ID: 38258957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating 3D MTC-BOOST in patients with congenital heart disease using a joint multi-scale variational neural network reconstruction.
    Fotaki A; Fuin N; Nordio G; Velasco Jimeno C; Qi H; Emmanuel Y; Pushparajah K; Botnar RM; Prieto C
    Magn Reson Imaging; 2022 Oct; 92():120-132. PubMed ID: 35772584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images.
    Liang L; Kong F; Martin C; Pham T; Wang Q; Duncan J; Sun W
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27557429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.
    Lamata P; Niederer S; Nordsletten D; Barber DC; Roy I; Hose DR; Smith N
    Med Image Anal; 2011 Dec; 15(6):801-13. PubMed ID: 21788150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning approach for magnetic resonance image-based mouse brain modeling and fast computation in controlled cortical impact.
    Lai C; Chen Y; Wang T; Liu J; Wang Q; Du Y; Feng Y
    Med Biol Eng Comput; 2020 Nov; 58(11):2835-2844. PubMed ID: 32954460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation.
    Karade V; Ravi B
    Int J Comput Assist Radiol Surg; 2015 Apr; 10(4):473-85. PubMed ID: 25037878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid inference of personalised left-ventricular meshes by deformation-based differentiable mesh voxelization.
    Joyce T; Buoso S; Stoeck CT; Kozerke S
    Med Image Anal; 2022 Jul; 79():102445. PubMed ID: 35468554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore texture analysis in automated 3D breast ultrasound images for implanted lightweight hernia mesh identification: a preliminary study.
    Yang J; Li H; Wu J; Sun L; Xu D; Wang Y; Zhang Y; Chen Y; Chen L
    Biomed Eng Online; 2021 Feb; 20(1):23. PubMed ID: 33632226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unpaired mesh-to-image translation for 3D fluorescent microscopy images of neurons.
    Cudic M; Diamond JS; Noble JA
    Med Image Anal; 2023 May; 86():102768. PubMed ID: 36857945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.