These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36327291)

  • 1. Validation of two-dimensional video-based inference of finger kinematics with pose estimation.
    Gionfrida L; Rusli WMR; Bharath AA; Kedgley AE
    PLoS One; 2022; 17(11):e0276799. PubMed ID: 36327291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras.
    Nakano N; Sakura T; Ueda K; Omura L; Kimura A; Iino Y; Fukashiro S; Yoshioka S
    Front Sports Act Living; 2020; 2():50. PubMed ID: 33345042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics of the fingers and hands during computer keyboard use.
    Baker NA; Cham R; Cidboy EH; Cook J; Redfern MS
    Clin Biomech (Bristol); 2007 Jan; 22(1):34-43. PubMed ID: 17052825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Performance of the Leap Motion Controller
    Ganguly A; Rashidi G; Mombaur K
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33802495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics.
    Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C
    Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markerless motion capture and measurement of hand kinematics: validation and application to home-based upper limb rehabilitation.
    Metcalf CD; Robinson R; Malpass AJ; Bogle TP; Dell TA; Harris C; Demain SH
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2184-92. PubMed ID: 23475333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carpometacarpal joint osteoarthritis, sex, and handedness on thumb in vivo kinematics.
    Hamann N; Heidemann J; Heinrich K; Wu H; Bleuel J; Gonska C; Brüggemann GP
    J Hand Surg Am; 2014 Nov; 39(11):2161-7. PubMed ID: 25245769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
    Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ
    J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A marker-based approach to determine the centers of rotation of finger joints.
    Lapresa M; Guglielmelli E; Zollo L; Cordella F
    Comput Methods Programs Biomed; 2024 Apr; 246():108055. PubMed ID: 38320368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agreement between a markerless and a marker-based motion capture systems for balance related quantities.
    Chaumeil A; Lahkar BK; Dumas R; Muller A; Robert T
    J Biomech; 2024 Mar; 165():112018. PubMed ID: 38412623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust identification of three-dimensional thumb and index finger kinematics with a minimal set of markers.
    Nataraj R; Li ZM
    J Biomech Eng; 2013 Sep; 135(9):91002. PubMed ID: 23775305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics.
    Van Hooren B; Pecasse N; Meijer K; Essers JMN
    Scand J Med Sci Sports; 2023 Jun; 33(6):966-978. PubMed ID: 36680411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR
    J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm.
    Ota M; Tateuchi H; Hashiguchi T; Ichihashi N
    Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a realistic optoelectronic-based kinematic model of the hand: representing the transverse metacarpal arch reduces accessory rotations of the metacarpophalangeal joints.
    Cocchiarella DM; Kociolek AM; Tse CT; Keir PJ
    Comput Methods Biomech Biomed Engin; 2016; 19(6):639-47. PubMed ID: 26158485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Two-Axis Goniometric Sensor for Tracking Finger Motion.
    Wang L; Meydan T; Williams PI
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28379170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional rotations of human three-joint fingers: an optoelectronic measurement. Preliminary results.
    Degeorges R; Parasie J; Mitton D; Imbert N; Goubier JN; Lavaste F
    Surg Radiol Anat; 2005 Mar; 27(1):43-50. PubMed ID: 15316760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral median nerve block impairs precision pinch movement.
    Li ZM; Nimbarte AD
    Clin Neurophysiol; 2006 Sep; 117(9):1941-8. PubMed ID: 16887386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of dominant hand range of motion among throwing types in baseball pitchers.
    Wang LH; Kuo LC; Shih SW; Lo KC; Su FC
    Hum Mov Sci; 2013 Aug; 32(4):719-29. PubMed ID: 23764035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the Use of 2D Video-Based Markerless Motion Capture to Measure and Parameterize Movement During Functional Capacity Evaluation.
    Remedios SM; Fischer SL
    J Occup Rehabil; 2021 Dec; 31(4):754-767. PubMed ID: 34515942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.