BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36327452)

  • 1. Anharmonic lattice dynamics and structural phase transition of SnTe monolayer from first principles.
    Pandit A; Hamad B
    J Phys Condens Matter; 2022 Nov; 51(3):. PubMed ID: 36327452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS
    Pandit A; Hamad B
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of anharmonic strength and number of allowed three-phonon processes in lattice thermal conductivity of SnTe based compounds.
    Keshri SP; Medhi A
    J Phys Condens Matter; 2021 Mar; 33(11):115701. PubMed ID: 33326936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anharmonic phonon frequency and ultralow lattice thermal conductivity in β-Cu
    Zhang W; Zheng C; Dong Y; Yang JY; Liu L
    Phys Chem Chem Phys; 2020 Dec; 22(48):28086-28092. PubMed ID: 33289745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anharmonic phonon renormalization and thermoelectric properties of CsPbX
    Yao Z; Cao W; Wang Z; Miao L; Shi J; Xiong R
    Phys Chem Chem Phys; 2023 Oct; 25(38):26236-26244. PubMed ID: 37740341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Stability, Strong Four-Phonon Scattering, and Low Lattice Thermal Conductivity in Superatom-Based Superionic Conductor Na
    Du PH; Zhang C; Sun J; Li T; Sun Q
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47882-47891. PubMed ID: 36239388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Study of Anharmonic Lattice Dynamics in Low Thermal Conductivity AgCrSe_{2}: Evidence for a Large Resonant Four-Phonon Scattering.
    Xie L; Feng JH; Li R; He JQ
    Phys Rev Lett; 2020 Dec; 125(24):245901. PubMed ID: 33412052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quartic Anharmonicity of Rattlers and Its Effect on Lattice Thermal Conductivity of Clathrates from First Principles.
    Tadano T; Tsuneyuki S
    Phys Rev Lett; 2018 Mar; 120(10):105901. PubMed ID: 29570340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX
    Bi S; Sun Z; Yuan K; Chang Z; Zhang X; Gao Y; Tang D
    Phys Chem Chem Phys; 2021 Oct; 23(41):23718-23729. PubMed ID: 34642727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP
    Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J
    Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Thermoelectric Performance SnTe with a Segregated and Percolated Structure.
    Ma Z; Xu T; Li W; Cheng Y; Li J; Wei Y; Jiang Q; Luo Y; Yang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9192-9202. PubMed ID: 35133800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics.
    Li CW; Hellman O; Ma J; May AF; Cao HB; Chen X; Christianson AD; Ehlers G; Singh DJ; Sales BC; Delaire O
    Phys Rev Lett; 2014 May; 112(17):175501. PubMed ID: 24836255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nature of the cubic to tetragonal phase transition in methylammonium lead iodide perovskite.
    Saidi WA; Choi JJ
    J Chem Phys; 2016 Oct; 145(14):144702. PubMed ID: 27782531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic sources of high thermal conductivity of CdSiP
    Wei L; Zhang Y; Lv X; Yang Y; Yu H; Hu Y; Zhang H; Wang X; Liu B; Li Q
    Phys Chem Chem Phys; 2018 Jan; 20(3):1568-1574. PubMed ID: 29260168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the High-Temperature Stabilization of Cubic Zirconia from Anharmonic Lattice Dynamics.
    Tolborg K; Walsh A
    Cryst Growth Des; 2023 May; 23(5):3314-3319. PubMed ID: 37159659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3.
    Li CW; Tang X; Muñoz JA; Keith JB; Tracy SJ; Abernathy DL; Fultz B
    Phys Rev Lett; 2011 Nov; 107(19):195504. PubMed ID: 22181626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast access of the lattice thermal conductivity and phonon quasiparticle spectra of Mo
    Qiu Y; Jing Z; Liu H; He H; Wu K; Cheng Y; Xiao B
    Nanoscale; 2024 Apr; 16(15):7645-7659. PubMed ID: 38529611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure Effect of the Vibrational and Thermodynamic Properties of Chalcopyrite-Type Compound AgGaS₂: A First-Principles Investigation.
    Yang J; Fan Q; Yu Y; Zhang W
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on lattice dynamics and thermal conductivity of fluorite AF
    Liu P; Zhao Y; Wang X; Ni J; Dai Z
    Phys Chem Chem Phys; 2024 Apr; 26(14):10868-10879. PubMed ID: 38525602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.