These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36327717)
21. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. Nemoto J; Saito T; Isogai A ACS Appl Mater Interfaces; 2015 Sep; 7(35):19809-15. PubMed ID: 26301859 [TBL] [Abstract][Full Text] [Related]
22. Hydrophobization of surfaces on cellulose nanofibers by enzymatic grafting of partially 2-deoxygenated amylose. Totani M; Anai T; Kadokawa JI Carbohydr Polym; 2024 Jul; 335():122086. PubMed ID: 38616071 [TBL] [Abstract][Full Text] [Related]
23. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Puangsin B; Yang Q; Saito T; Isogai A Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078 [TBL] [Abstract][Full Text] [Related]
24. Relationship of Distribution of Carboxy Groups to Molar Mass Distribution of TEMPO-Oxidized Algal, Cotton, and Wood Cellulose Nanofibrils. Ono Y; Fukui S; Funahashi R; Isogai A Biomacromolecules; 2019 Oct; 20(10):4026-4034. PubMed ID: 31525036 [TBL] [Abstract][Full Text] [Related]
25. Bulky quaternary alkylammonium counterions enhance the nanodispersibility of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose in diverse solvents. Shimizu M; Saito T; Isogai A Biomacromolecules; 2014 May; 15(5):1904-9. PubMed ID: 24750066 [TBL] [Abstract][Full Text] [Related]
26. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds. Lavoine N; Bras J; Saito T; Isogai A Macromol Rapid Commun; 2016 Jul; 37(13):1033-9. PubMed ID: 27184669 [TBL] [Abstract][Full Text] [Related]
27. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Shinoda R; Saito T; Okita Y; Isogai A Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of hemostatic property of plant derived oxidized nanocellulose-silk fibroin based scaffolds by thrombin loading. Shefa AA; Taz M; Lee SY; Lee BT Carbohydr Polym; 2019 Mar; 208():168-179. PubMed ID: 30658788 [TBL] [Abstract][Full Text] [Related]
29. Preparation of Aqueous Dispersions of TEMPO-Oxidized Cellulose Nanofibrils with Various Metal Counterions and Their Super Deodorant Performances. Sone A; Saito T; Isogai A ACS Macro Lett; 2016 Dec; 5(12):1402-1405. PubMed ID: 35651204 [TBL] [Abstract][Full Text] [Related]
30. TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Huang C; Ji H; Yang Y; Guo B; Luo L; Meng Z; Fan L; Xu J Carbohydr Polym; 2020 Feb; 230():115570. PubMed ID: 31887969 [TBL] [Abstract][Full Text] [Related]
31. TEMPO oxidized nano-cellulose containing thermo-responsive injectable hydrogel for post-surgical peritoneal tissue adhesion prevention. Sultana T; Van Hai H; Abueva C; Kang HJ; Lee SY; Lee BT Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():12-21. PubMed ID: 31146982 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of thrombin loaded TEMPO-oxidized cellulose nanofiber-gelatin sponges and their hemostatic behavior in rat liver hemorrhage model. Ibne Mahbub MS; Sultana T; Gwon JG; Lee BT J Biomater Sci Polym Ed; 2022 Mar; 33(4):499-516. PubMed ID: 34644247 [TBL] [Abstract][Full Text] [Related]
33. All-natural aerogel of nanoclay/cellulose nanofibers with hierarchical porous structure for rapid hemostasis. Long M; Yang X; Shi T; Yang Y Int J Biol Macromol; 2024 Oct; 278(Pt 3):134592. PubMed ID: 39122069 [TBL] [Abstract][Full Text] [Related]
34. Understanding viscoelastic behavior of hybrid nanocellulose film based on rheological and electrostatic observation in blended suspension. Kim M; Kim S; Han N; Lee S; Kim H Carbohydr Polym; 2023 Jan; 300():120218. PubMed ID: 36372470 [TBL] [Abstract][Full Text] [Related]
35. Nanoporous networks prepared by simple air drying of aqueous TEMPO-oxidized cellulose nanofibril dispersions. Nemoto J; Soyama T; Saito T; Isogai A Biomacromolecules; 2012 Mar; 13(3):943-6. PubMed ID: 22332709 [No Abstract] [Full Text] [Related]
36. Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particles. Dastpak A; Ansell P; Searle JR; Lundström M; Wilson BP ACS Appl Mater Interfaces; 2021 Sep; 13(34):41034-41045. PubMed ID: 34412473 [TBL] [Abstract][Full Text] [Related]
37. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities. Sun R; Zhu J; Wu H; Wang S; Li W; Sun Q Int J Biol Macromol; 2021 Jun; 180():510-522. PubMed ID: 33745975 [TBL] [Abstract][Full Text] [Related]
39. pH-Dependent Morphology Control of Cellulose Nanofiber/Graphene Oxide Cryogels. Pan ZZ; Govedarica A; Nishihara H; Tang R; Wang C; Luo Y; Lv W; Kang FY; Trifkovic M; Yang QH Small; 2021 Jan; 17(3):e2005564. PubMed ID: 33350120 [TBL] [Abstract][Full Text] [Related]
40. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. Liu P; Oksman K; Mathew AP J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]