These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 36327724)

  • 41. Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites.
    Li Y; Li J; Huang J; Chen J; Kong Y; Yang B; Li Z; Lei L; Chai G; Wen Z; Dai L; Hou Y
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):9078-9085. PubMed ID: 33586316
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Developments of Dual Single-Atom Catalysts for Nitrogen Reduction Reaction.
    Liang M; Shao X; Lee H
    Chemistry; 2024 Jan; 30(2):e202302843. PubMed ID: 37768323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Boosting the Electrocatalytic Conversion of Nitrogen to Ammonia on Metal-Phthalocyanine-Based Two-Dimensional Conjugated Covalent Organic Frameworks.
    Zhong H; Wang M; Ghorbani-Asl M; Zhang J; Ly KH; Liao Z; Chen G; Wei Y; Biswal BP; Zschech E; Weidinger IM; Krasheninnikov AV; Dong R; Feng X
    J Am Chem Soc; 2021 Dec; 143(47):19992-20000. PubMed ID: 34784212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical screening of single atoms anchored on defective graphene for electrocatalytic N
    Liu P; Fu C; Li Y; Wei H
    Phys Chem Chem Phys; 2020 May; 22(17):9322-9329. PubMed ID: 32309840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient N
    Wan J; Liu D; Feng C; Zhang H; Wang Y
    Chem Sci; 2024 Aug; 15(32):12796-12805. PubMed ID: 39148797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-throughput screening of single metal atom anchored on N-doped boron phosphide for N
    Chen Y; Zhang X; Qin J; Liu R
    Nanoscale; 2021 Aug; 13(31):13437-13450. PubMed ID: 34477749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical exploration of the nitrogen fixation mechanism of two-dimensional dual-metal TM
    Sun J; Xia P; Lin Y; Zhang Y; Chen A; Shi L; Liu Y; Niu X; He A; Zhang X
    Nanoscale Horiz; 2023 Jan; 8(2):211-223. PubMed ID: 36484435
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mo-X
    Qiao M; Xie J; Zhu D
    Nanoscale; 2024 Feb; 16(7):3676-3684. PubMed ID: 38288848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning the Site-to-Site Interaction of Heteronuclear Diatom Catalysts MoTM/C
    Yang X; An P; Wang R; Jia J
    Molecules; 2023 May; 28(10):. PubMed ID: 37241745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mo Cluster Support on C
    Chen Y; Zhao M; Wang Z; Jiang Q
    Chemphyschem; 2023 May; 24(10):e202300012. PubMed ID: 36811213
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Local Spin-State Tuning of Iron Single-Atom Electrocatalyst by S-Coordinated Doping for Kinetics-Boosted Ammonia Synthesis.
    Li Y; Ji Y; Zhao Y; Chen J; Zheng S; Sang X; Yang B; Li Z; Lei L; Wen Z; Feng X; Hou Y
    Adv Mater; 2022 Jul; 34(28):e2202240. PubMed ID: 35522454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational Study of Double Transition Metal Atom Anchored on Graphdiyne Monolayer for Nitrogen Electroreduction.
    Hu LG; Wang HJ; Su Y
    Chemphyschem; 2022 Jun; 23(11):e202200149. PubMed ID: 35470520
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study.
    Xu Z; Song R; Wang M; Zhang X; Liu G; Qiao G
    Phys Chem Chem Phys; 2020 Nov; 22(45):26223-26230. PubMed ID: 33174542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrogenase Bioelectrochemistry for Synthesis Applications.
    Milton RD; Minteer SD
    Acc Chem Res; 2019 Dec; 52(12):3351-3360. PubMed ID: 31800207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advancing electrochemical nitrogen reduction: Efficacy of two-dimensional SiP layered structures with single-atom transition metal catalysts.
    Li Q; Li W; Liu D; Ma Z; Ye Y; Zhang Y; Chen Q; Cheng Z; Chen Y; Sa R
    J Colloid Interface Sci; 2024 Aug; 668():399-411. PubMed ID: 38685165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine learning-driven shortening the screening process towards high-performance nitrogen reduction reaction electrocatalysts with four-step screening strategy.
    He C; Chen D; Zhang WX
    J Colloid Interface Sci; 2024 Dec; 676():22-32. PubMed ID: 39018807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mo
    Wan Y; Wang Z; Li J; Lv R
    ACS Nano; 2022 Jan; 16(1):643-654. PubMed ID: 34964347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulating the Coordination Environment of Single-Atom Catalysts Anchored on Thiophene Linked Porphyrin for an Efficient Nitrogen Reduction Reaction.
    Sathishkumar N; Chen HT
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15545-15560. PubMed ID: 36931875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Designing N, P-doped graphene surface-supported Mo single-atom catalysts for efficient conversion of nitrogen into ammonia: a computational guideline.
    Khedr GE; Fawzy SM; Sharafeldin IM; Allam NK
    Nanoscale Adv; 2024 Aug; 6(16):4160-4166. PubMed ID: 39114149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational Design of Transition Metal Single-Atom Electrocatalysts on PtS
    Cai L; Zhang N; Qiu B; Chai Y
    ACS Appl Mater Interfaces; 2020 May; 12(18):20448-20455. PubMed ID: 32285656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.