BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36327880)

  • 1. Potential dual inhibition of SE and CYP51 by eugenol conferring inhibition of Candida albicans: Computationally curated study with experimental validation.
    Prajapati J; Goswami D; Dabhi M; Acharya D; Rawal RM
    Comput Biol Med; 2022 Dec; 151(Pt A):106237. PubMed ID: 36327880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New miconazole-based azoles derived from eugenol show activity against Candida spp. and Cryptococcus gattii by inhibiting the fungal ergosterol biosynthesis.
    Campos Péret VA; Reis RCFM; Braga SFP; Benedetti MD; Caldas IS; Carvalho DT; Santana LFA; Johann S; Souza TB
    Eur J Med Chem; 2023 Aug; 256():115436. PubMed ID: 37146343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ergosterol synthesis in Candida albicans by novel eugenol tosylate congeners targeting sterol 14α-demethylase (CYP51) enzyme.
    Lone SA; Khan S; Ahmad A
    Arch Microbiol; 2020 May; 202(4):711-726. PubMed ID: 31786635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive in vitro and in silico Assessment on Inhibition of CYP51B and Ergosterol Biosynthesis by Eugenol in Rhizopus oryzae.
    Prajapati J; Rao P; Poojara L; Acharya D; Patel SK; Goswami D; Rawal RM
    Curr Microbiol; 2022 Dec; 80(1):47. PubMed ID: 36538133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analyses of
    Hargrove TY; Friggeri L; Wawrzak Z; Qi A; Hoekstra WJ; Schotzinger RJ; York JD; Guengerich FP; Lepesheva GI
    J Biol Chem; 2017 Apr; 292(16):6728-6743. PubMed ID: 28258218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terbinafine: mode of action and properties of the squalene epoxidase inhibition.
    Ryder NS
    Br J Dermatol; 1992 Feb; 126 Suppl 39():2-7. PubMed ID: 1543672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida.
    Ahmad A; Khan A; Manzoor N; Khan LA
    Microb Pathog; 2010 Jan; 48(1):35-41. PubMed ID: 19835945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison and analysis of the structures and binding modes of antifungal SE and CYP51 inhibitors.
    Sun B; Huang W; Liu M; Lei K
    J Mol Graph Model; 2017 Oct; 77():1-8. PubMed ID: 28802152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and bioactivity evaluation of novel arylalkene-amide derivatives as dual-target antifungal inhibitors.
    Sun B; Dong Y; An Y; Liu M; Han J; Zhao L; Liu X
    Eur J Med Chem; 2020 Nov; 205():112645. PubMed ID: 32791399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of squalene epoxidase inhibitors on Candida albicans.
    Georgopapadakou NH; Bertasso A
    Antimicrob Agents Chemother; 1992 Aug; 36(8):1779-81. PubMed ID: 1416865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei.
    Onyewu C; Blankenship JR; Del Poeta M; Heitman J
    Antimicrob Agents Chemother; 2003 Mar; 47(3):956-64. PubMed ID: 12604527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potent arylamide derivatives as dual-target antifungal agents: Design, synthesis, biological evaluation, and molecular docking studies.
    Dong Y; Liu X; An Y; Liu M; Han J; Sun B
    Bioorg Chem; 2020 Jun; 99():103749. PubMed ID: 32220664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme.
    Warrilow AG; Hull CM; Parker JE; Garvey EP; Hoekstra WJ; Moore WR; Schotzinger RJ; Kelly DE; Kelly SL
    Antimicrob Agents Chemother; 2014 Dec; 58(12):7121-7. PubMed ID: 25224009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and activity evaluation of novel dual-target (SE/CYP51) anti-fungal agents containing amide naphthyl structure.
    Liu W; Sun Z; An Y; Liu Y; Fan H; Han J; Sun B
    Eur J Med Chem; 2022 Jan; 228():113972. PubMed ID: 34772530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Candida, docking studies, and in vitro metabolism-mediated cytotoxicity evaluation of Eugenol derivatives.
    Dutra JAP; Maximino SC; Gonçalves RCR; Morais PAB; de Lima Silva WC; Rodrigues RP; Neto ÁC; Júnior VL; de Souza Borges W; Kitagawa RR
    Chem Biol Drug Des; 2023 Feb; 101(2):350-363. PubMed ID: 36053023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate.
    Ryder NS; Frank I; Dupont MC
    Antimicrob Agents Chemother; 1986 May; 29(5):858-60. PubMed ID: 3524433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding.
    Xiao L; Madison V; Chau AS; Loebenberg D; Palermo RE; McNicholas PM
    Antimicrob Agents Chemother; 2004 Feb; 48(2):568-74. PubMed ID: 14742211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode of action of anti-Candida drugs: focus on terconazole and other ergosterol biosynthesis inhibitors.
    Vanden Bossche H; Marichal P
    Am J Obstet Gynecol; 1991 Oct; 165(4 Pt 2):1193-9. PubMed ID: 1951574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of resistance to azole antifungals.
    Lupetti A; Danesi R; Campa M; Del Tacca M; Kelly S
    Trends Mol Med; 2002 Feb; 8(2):76-81. PubMed ID: 11815273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility.
    Song J; Zhai P; Zhang Y; Zhang C; Sang H; Han G; Keller NP; Lu L
    mBio; 2016 Feb; 7(1):e01919-15. PubMed ID: 26908577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.