These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36327883)

  • 1. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction.
    Lee M; Kim PJ; Joe H; Kim HG
    Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-step multi-omics modelling of drug sensitivity in cancer cell lines to identify driving mechanisms.
    Kusch N; Schuppert A
    PLoS One; 2020; 15(11):e0238961. PubMed ID: 33226984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of autoencoder and graph convolutional network for predicting breast cancer drug response.
    Abinas V; Abhinav U; Haneem EM; Vishnusankar A; Nazeer KAA
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450013. PubMed ID: 39051144
    [No Abstract]   [Full Text] [Related]  

  • 6. DeepFusionCDR: Employing Multi-Omics Integration and Molecule-Specific Transformers for Enhanced Prediction of Cancer Drug Responses.
    Hu X; Zhang P; Zhang J; Deng L
    IEEE J Biomed Health Inform; 2024 Oct; 28(10):6248-6258. PubMed ID: 38935469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DROEG: a method for cancer drug response prediction based on omics and essential genes integration.
    Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning and multi-omics approach to predict drug responses in cancer.
    Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC
    BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data.
    Rashid MM; Selvarajoo K
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38904542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Predicting tumor drug sensitivity with multi-omics data].
    Yang C; Liu Z; Dai P; Zhang Y; Huang P; Lin Y; Xie L
    Sheng Wu Gong Cheng Xue Bao; 2022 Jun; 38(6):2201-2212. PubMed ID: 35786472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features.
    Saranya KR; Vimina ER
    Comput Biol Chem; 2024 Oct; 112():108175. PubMed ID: 39191166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A denoised multi-omics integration framework for cancer subtype classification and survival prediction.
    Pang J; Liang B; Ding R; Yan Q; Chen R; Xu J
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data.
    Xu Y; Dong Q; Li F; Xu Y; Hu C; Wang J; Shang D; Zheng X; Yang H; Zhang C; Shao M; Meng M; Xiong Z; Li X; Zhang Y
    J Transl Med; 2019 Aug; 17(1):255. PubMed ID: 31387579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOLI: multi-omics late integration with deep neural networks for drug response prediction.
    Sharifi-Noghabi H; Zolotareva O; Collins CC; Ester M
    Bioinformatics; 2019 Jul; 35(14):i501-i509. PubMed ID: 31510700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.