These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36327921)

  • 1. Free surface entrainment of oxide particles and their role in ultrasonic treatment performance of aluminum alloys.
    Sun J; Higashi K; Romankov S; Yamamoto T; Komarov S
    Ultrason Sonochem; 2022 Nov; 90():106209. PubMed ID: 36327921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of acoustic streaming in water and aluminum melt during ultrasonic irradiation.
    Yamamoto T; Kubo K; Komarov SV
    Ultrason Sonochem; 2021 Mar; 71():105381. PubMed ID: 33157358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys.
    Zhang L; Eskin DG; Katgerman L
    J Mater Sci; 2011; 46(15):5252-5259. PubMed ID: 36039104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The comparison of ultrasonic effects in different metal melts.
    Kang J; Zhang X; Wang S; Ma J; Huang T
    Ultrasonics; 2015 Mar; 57():11-7. PubMed ID: 25435493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Acoustic Streaming in Formation of Unsteady Flow in Billet Sump during Ultrasonic DC Casting of Aluminum Alloys.
    Komarov S; Yamamoto T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of CrSi
    Sun J; Takahashi A; Higashi K; Yamamoto T; Komarov S
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic techniques for imaging and measurements in molten aluminum.
    Ono Y; Moisan JF; Jen CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Dec; 50(12):1711-21. PubMed ID: 14761042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water.
    Priyadarshi A; Khavari M; Bin Shahrani S; Subroto T; Yusuf LA; Conte M; Prentice P; Pericleous K; Eskin D; Tzanakis I
    Ultrason Sonochem; 2021 Dec; 80():105820. PubMed ID: 34763212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ observation and analysis of ultrasonic capillary effect in molten aluminium.
    Tzanakis I; Xu WW; Eskin DG; Lee PD; Kotsovinos N
    Ultrason Sonochem; 2015 Nov; 27():72-80. PubMed ID: 26186822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contactless Ultrasonic Cavitation in Alloy Melts.
    Pericleous K; Bojarevics V; Djambazov G; Dybalska A; Griffiths WD; Tonry C
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31684156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of acoustic cavitation in water and molten aluminum alloy.
    Komarov S; Oda K; Ishiwata Y; Dezhkunov N
    Ultrason Sonochem; 2013 Mar; 20(2):754-61. PubMed ID: 23141190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavitation and acoustic streaming generated by different sonotrode tips.
    Fang Y; Yamamoto T; Komarov S
    Ultrason Sonochem; 2018 Nov; 48():79-87. PubMed ID: 30080589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic Bending Vibration-Assisted Purification Experimental Study of 7085 Aluminum Alloy Melt.
    Shi C; He J; Liao H; Mao D
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt.
    Eskin GI; Eskin DG
    Ultrason Sonochem; 2003 Jul; 10(4-5):297-301. PubMed ID: 12818397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental studies of ultrasonic melt processing.
    Eskin DG; Tzanakis I; Wang F; Lebon GSB; Subroto T; Pericleous K; Mi J
    Ultrason Sonochem; 2019 Apr; 52():455-467. PubMed ID: 30594518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observation of melt pool evolution in ultrasonic vibration-assisted directed energy deposition.
    El-Azab SA; Zhang C; Jiang S; Vyatskikh AL; Valdevit L; Lavernia EJ; Schoenung JM
    Sci Rep; 2023 Oct; 13(1):17705. PubMed ID: 37848463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modelling of acoustic streaming during the ultrasonic melt treatment of direct-chill (DC) casting.
    Lebon GSB; Salloum-Abou-Jaoude G; Eskin D; Tzanakis I; Pericleous K; Jarry P
    Ultrason Sonochem; 2019 Jun; 54():171-182. PubMed ID: 30755390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical investigation of acoustic pressures in different liquids.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D
    Ultrason Sonochem; 2018 Apr; 42():411-421. PubMed ID: 29429686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.