BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36327975)

  • 1. Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells.
    Altea-Manzano P; Vandekeere A; Edwards-Hicks J; Roldan M; Abraham E; Lleshi X; Guerrieri AN; Berardi D; Wills J; Junior JM; Pantazi A; Acosta JC; Sanchez-Martin RM; Fendt SM; Martin-Hernandez M; Finch AJ
    Mol Cell; 2022 Dec; 82(23):4537-4547.e7. PubMed ID: 36327975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells.
    Hart ML; Quon E; Vigil ABG; Engstrom IA; Newsom OJ; Davidsen K; Hoellerbauer P; Carlisle SM; Sullivan LB
    Elife; 2023 Mar; 12():. PubMed ID: 36883551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MDH2 produced OAA is a metabolic switch rewiring the fuelling of respiratory chain and TCA cycle.
    Molinié T; Cougouilles E; David C; Cahoreau E; Portais JC; Mourier A
    Biochim Biophys Acta Bioenerg; 2022 Mar; 1863(3):148532. PubMed ID: 35063410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.
    Gameiro PA; Laviolette LA; Kelleher JK; Iliopoulos O; Stephanopoulos G
    J Biol Chem; 2013 May; 288(18):12967-77. PubMed ID: 23504317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosolic RNA binding of the mitochondrial TCA cycle enzyme malate dehydrogenase.
    Noble M; Chatterjee A; Sekaran T; Schwarzl T; Hentze MW
    RNA; 2024 Jun; 30(7):839-853. PubMed ID: 38609156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction.
    Gaude E; Schmidt C; Gammage PA; Dugourd A; Blacker T; Chew SP; Saez-Rodriguez J; O'Neill JS; Szabadkai G; Minczuk M; Frezza C
    Mol Cell; 2018 Feb; 69(4):581-593.e7. PubMed ID: 29452638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate transamination and NAD biosynthesis enable proliferation of succinate dehydrogenase-deficient cells by supporting aerobic glycolysis.
    Ricci L; Stanley FU; Eberhart T; Mainini F; Sumpton D; Cardaci S
    Cell Death Dis; 2023 Jul; 14(7):403. PubMed ID: 37414778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of glutamine in HeLa cells: role and control of truncated TCA cycles in tumour mitochondria.
    Piva TJ; McEvoy-Bowe E
    J Cell Biochem; 1998 Feb; 68(2):213-25. PubMed ID: 9443077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.
    Nissen JD; Pajęcka K; Stridh MH; Skytt DM; Waagepetersen HS
    Glia; 2015 Dec; 63(12):2313-26. PubMed ID: 26221781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.
    Yang H; Zhou L; Shi Q; Zhao Y; Lin H; Zhang M; Zhao S; Yang Y; Ling ZQ; Guan KL; Xiong Y; Ye D
    EMBO J; 2015 Apr; 34(8):1110-25. PubMed ID: 25755250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute sources of mitochondrial NAD
    Chinopoulos C
    Exp Neurol; 2020 May; 327():113218. PubMed ID: 32035071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae.
    Al-Saryi NA; Al-Hejjaj MY; van Roermund CWT; Hulmes GE; Ekal L; Payton C; Wanders RJA; Hettema EH
    Sci Rep; 2017 Sep; 7(1):11868. PubMed ID: 28928432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Troglitazone regulates anaplerosis via a pull/push affect on glutamate dehydrogenase mediated glutamate deamination in kidney-derived epithelial cells; implications for the Warburg effect.
    Oliver R; Friday E; Turturro F; Welbourne T
    Cell Physiol Biochem; 2010; 26(4-5):619-28. PubMed ID: 21063099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palmitoylation of MDH2 by ZDHHC18 activates mitochondrial respiration and accelerates ovarian cancer growth.
    Pei X; Li KY; Shen Y; Li JT; Lei MZ; Fang CY; Lu HJ; Yang HJ; Wen W; Yin M; Qu J; Lei QY
    Sci China Life Sci; 2022 Oct; 65(10):2017-2030. PubMed ID: 35366151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Activity of oxidative enzymes of the tricarboxylic acid cycle in the liver of rats during hypokinesia].
    Ganin IuA
    Kosm Biol Aviakosm Med; 1983; 17(1):67-71. PubMed ID: 6843075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway.
    Borst P
    IUBMB Life; 2020 Nov; 72(11):2241-2259. PubMed ID: 32916028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.
    Wilkins HM; Koppel S; Carl SM; Ramanujan S; Weidling I; Michaelis ML; Michaelis EK; Swerdlow RH
    J Neurochem; 2016 Apr; 137(1):76-87. PubMed ID: 26811028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inborn disorders of the malate aspartate shuttle.
    Broeks MH; van Karnebeek CDM; Wanders RJA; Jans JJM; Verhoeven-Duif NM
    J Inherit Metab Dis; 2021 Jul; 44(4):792-808. PubMed ID: 33990986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.
    Yoshida K; Hisabori T
    Biochim Biophys Acta; 2016 Jun; 1857(6):810-8. PubMed ID: 26946085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.