These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36328152)

  • 21. The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning.
    Tang LTH; Trivedi M; Freund J; Salazar CJ; Rahman M; Ramirez-Suarez NJ; Lee G; Wang Y; Grant BD; Bülow HE
    PLoS Genet; 2021 Jul; 17(7):e1009475. PubMed ID: 34197450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate.
    Hou Z; Mitra B
    J Biol Chem; 2003 Aug; 278(31):28455-61. PubMed ID: 12746428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase.
    Wakabayashi S; Shigekawa M
    J Biol Chem; 1987 Aug; 262(24):11524-31. PubMed ID: 2957367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme.
    Hanel AM; Jencks WP
    Biochemistry; 1991 Nov; 30(47):11320-30. PubMed ID: 1835656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylated intermediate of the ATPase from the plasma membrane of yeast.
    Malpartida F; Serrano R
    Eur J Biochem; 1981 May; 116(2):413-7. PubMed ID: 6454577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinctive features of catalytic and transport mechanisms in mammalian sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) and Cu+ (ATP7A/B) ATPases.
    Lewis D; Pilankatta R; Inesi G; Bartolommei G; Moncelli MR; Tadini-Buoninsegni F
    J Biol Chem; 2012 Sep; 287(39):32717-27. PubMed ID: 22854969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the soluble domain of the ABC7 type transporter Atm1.
    Chen CA; Cowan JA
    J Biol Chem; 2003 Dec; 278(52):52681-8. PubMed ID: 14514697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport mechanism of P4 ATPase phosphatidylcholine flippases.
    Bai L; You Q; Jain BK; Duan HD; Kovach A; Graham TR; Li H
    Elife; 2020 Dec; 9():. PubMed ID: 33320091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2.
    Eren E; Kennedy DC; Maroney MJ; Argüello JM
    J Biol Chem; 2006 Nov; 281(45):33881-91. PubMed ID: 16973620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p.
    Cronin SR; Khoury A; Ferry DK; Hampton RY
    J Cell Biol; 2000 Mar; 148(5):915-24. PubMed ID: 10704442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yeast genes controlling responses to topogenic signals in a model transmembrane protein.
    Tipper DJ; Harley CA
    Mol Biol Cell; 2002 Apr; 13(4):1158-74. PubMed ID: 11950929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion.
    Fujimori T; Jencks WP
    J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH and magnesium dependence of ATP binding to sarcoplasmic reticulum ATPase. Evidence that the catalytic ATP-binding site consists of two domains.
    Lacapère JJ; Bennett N; Dupont Y; Guillain F
    J Biol Chem; 1990 Jan; 265(1):348-53. PubMed ID: 2136738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yeast mitochondrial F1-ATPase--effects of metal ions.
    Jenkins WT
    Arch Biochem Biophys; 1994 Aug; 313(1):89-95. PubMed ID: 8053693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae.
    MacDiarmid CW; Milanick MA; Eide DJ
    J Biol Chem; 2002 Oct; 277(42):39187-94. PubMed ID: 12161436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional consequences of alterations to amino acids located in the hinge domain of the Ca(2+)-ATPase of sarcoplasmic reticulum.
    Vilsen B; Andersen JP; MacLennan DH
    J Biol Chem; 1991 Aug; 266(24):16157-64. PubMed ID: 1831454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of Saccharomyces cerevisiae PMA1 H+-ATPase inactivation by Fe2+, H2O2 and Fenton reagents.
    Stadler N; Höfer M; Sigler K
    Free Radic Res; 2001 Dec; 35(6):643-53. PubMed ID: 11811518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cloned prokaryotic Cd2+ P-type ATPase increases yeast sensitivity to Cd2+.
    Wu CC; Bal N; Perard J; Lowe J; Boscheron C; Mintz E; Catty P
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1034-40. PubMed ID: 15485658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E290-8. PubMed ID: 22308393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP regulation of sarcoplasmic reticulum Ca2+-ATPase. Metal-free ATP and 8-bromo-ATP bind with high affinity to the catalytic site of phosphorylated ATPase and accelerate dephosphorylation.
    Champeil P; Riollet S; Orlowski S; Guillain F; Seebregts CJ; McIntosh DB
    J Biol Chem; 1988 Sep; 263(25):12288-94. PubMed ID: 2970458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.