BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36328171)

  • 21. [Advances in astaxanthin biosynthesis in Haematococcus pluvialis].
    Jiang S; Tong S
    Sheng Wu Gong Cheng Xue Bao; 2019 Jun; 35(6):988-997. PubMed ID: 31231995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of astaxanthin accumulation in Haematococcus pluvialis by exogenous oxaloacetate combined with nitrogen deficiency.
    Yu W; Zhang L; Zhao J; Liu J
    Bioresour Technol; 2022 Feb; 345():126484. PubMed ID: 34875371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A strategy for promoting carbon flux into fatty acid and astaxanthin biosynthesis by inhibiting the alternative oxidase respiratory pathway in Haematococcus pluvialis.
    Zhang L; Zhang C; Xu R; Yu W; Liu J
    Bioresour Technol; 2022 Jan; 344(Pt B):126275. PubMed ID: 34748980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome Analysis of the Accumulation of Astaxanthin in
    Wei Z; Sun F; Meng C; Xing W; Zhu X; Wang C; Cao K; Zhang C; Zhu B; Yao T; Gao Z
    Biomed Res Int; 2022; 2022():4827595. PubMed ID: 35903581
    [No Abstract]   [Full Text] [Related]  

  • 25. Research of Fluridone's Effects on Growth and Pigment Accumulation of
    Sun J; Zan J; Zang X
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328543
    [No Abstract]   [Full Text] [Related]  

  • 26. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances.
    Kim B; Youn Lee S; Lakshmi Narasimhan A; Kim S; Oh YK
    Bioresour Technol; 2022 Jan; 343():126124. PubMed ID: 34653624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward.
    Wilawan B; Chan SS; Ling TC; Show PL; Ng EP; Jonglertjunya W; Phadungbut P; Khoo KS
    Mol Biotechnol; 2024 Mar; 66(3):402-423. PubMed ID: 37270443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved Productivity of Astaxanthin from Photosensitive
    Lee KH; Chun Y; Lee JH; Park C; Yoo HY; Kwak HS
    Mar Drugs; 2022 Mar; 20(4):. PubMed ID: 35447893
    [No Abstract]   [Full Text] [Related]  

  • 29. A Review on
    Oslan SNH; Shoparwe NF; Yusoff AH; Rahim AA; Chang CS; Tan JS; Oslan SN; Arumugam K; Ariff AB; Sulaiman AZ; Mohamed MS
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33578851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae).
    Li Y; Sommerfeld M; Chen F; Hu Q
    J Plant Physiol; 2008 Nov; 165(17):1783-97. PubMed ID: 18313796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyethyleneimine-induced astaxanthin accumulation in the green alga Haematococcus pluvialis by increased oxidative stress.
    Yoshitomi T; Shimada N; Iijima K; Hashizume M; Yoshimoto K
    J Biosci Bioeng; 2019 Dec; 128(6):751-754. PubMed ID: 31253510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extraction of astaxanthin from Haematococcus pluvialis with hydrophobic deep eutectic solvents based on oleic acid.
    Pitacco W; Samorì C; Pezzolesi L; Gori V; Grillo A; Tiecco M; Vagnoni M; Galletti P
    Food Chem; 2022 Jun; 379():132156. PubMed ID: 35065488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative transcriptome analysis of a long-time span two-step culture process reveals a potential mechanism for astaxanthin and biomass hyper-accumulation in
    Huang L; Gao B; Wu M; Wang F; Zhang C
    Biotechnol Biofuels; 2019; 12():18. PubMed ID: 30705704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae).
    Chen G; Wang B; Han D; Sommerfeld M; Lu Y; Chen F; Hu Q
    Plant J; 2015 Jan; 81(1):95-107. PubMed ID: 25353310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unveiling the underlying molecular basis of astaxanthin accumulation in Haematococcus through integrative metabolomic-transcriptomic analysis.
    Hoys C; Romero-Losada AB; Del Río E; Guerrero MG; Romero-Campero FJ; García-González M
    Bioresour Technol; 2021 Jul; 332():125150. PubMed ID: 33878543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative physiological and metabolomic analyses of the hyper-accumulation of astaxanthin and lipids in Haematococcus pluvialis upon treatment with butylated hydroxyanisole.
    Ding W; Li Q; Han B; Zhao Y; Geng S; Ning D; Ma T; Yu X
    Bioresour Technol; 2019 Nov; 292():122002. PubMed ID: 31437797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of astaxanthin production in Haematococcus pluvialis using zinc oxide nanoparticles.
    Nasri N; Keyhanfar M; Behbahani M; Dini G
    J Biotechnol; 2021 Dec; 342():72-78. PubMed ID: 34673120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acidic cultivation of Haematococcus pluvialis for improved astaxanthin production in the presence of a lethal fungus.
    Hwang SW; Choi HI; Sim SJ
    Bioresour Technol; 2019 Apr; 278():138-144. PubMed ID: 30685617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis.
    Hu Q; Huang D; Li A; Hu Z; Gao Z; Yang Y; Wang C
    Biotechnol Biofuels; 2021 Apr; 14(1):82. PubMed ID: 33794980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of Geranylgeranyl Pyrophosphate Synthase (GGPPS) Paralogs from
    Huang D; Liu W; Li A; Wang C; Hu Z
    Mar Drugs; 2019 Dec; 17(12):. PubMed ID: 31842293
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.