BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36328247)

  • 1. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules.
    Haanen TJ; O'Connor CM; Narla G
    J Biol Chem; 2022 Dec; 298(12):102656. PubMed ID: 36328247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'δ holoenzyme.
    Jong CJ; Merrill RA; Wilkerson EM; Herring LE; Graves LM; Strack S
    J Biol Chem; 2020 Apr; 295(17):5654-5668. PubMed ID: 32156701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and role of the PP2A-B56 holoenzyme family in cancer.
    Peris I; Romero-Murillo S; Vicente C; Narla G; Odero MD
    Biochim Biophys Acta Rev Cancer; 2023 Sep; 1878(5):188953. PubMed ID: 37437699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation.
    Arnold HK; Sears RC
    Mol Cell Biol; 2006 Apr; 26(7):2832-44. PubMed ID: 16537924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity.
    Sents W; Ivanova E; Lambrecht C; Haesen D; Janssens V
    FEBS J; 2013 Jan; 280(2):644-61. PubMed ID: 22443683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer.
    Fowle H; Zhao Z; Graña X
    Adv Cancer Res; 2019; 144():55-93. PubMed ID: 31349904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HEAT repeat 1 motif is required for B56γ-containing protein phosphatase 2A (B56γ-PP2A) holoenzyme assembly and tumor-suppressive function.
    Nobumori Y; Shouse GP; Fan L; Liu X
    J Biol Chem; 2012 Mar; 287(14):11030-6. PubMed ID: 22315229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of PP2A holoenzymes containing FLAG-tagged B subunits.
    Adams DG; Wadzinski BE
    Methods Mol Biol; 2007; 365():101-11. PubMed ID: 17200557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail).
    Janssens V; Longin S; Goris J
    Trends Biochem Sci; 2008 Mar; 33(3):113-21. PubMed ID: 18291659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of subunit interactions and ternary complexes of protein phosphatase 2A in mammalian cells.
    Mo ST; Chiang SJ; Lai TY; Cheng YL; Chung CE; Kuo SC; Reece KM; Chen YC; Chang NS; Wadzinski BE; Chiang CW
    PLoS One; 2014; 9(12):e116074. PubMed ID: 25536081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily.
    Nasa I; Kettenbach AN
    Biochem Soc Trans; 2020 Oct; 48(5):2015-2027. PubMed ID: 33125487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the Ca2+-dependent PP2A heterotrimer and insights into Cdc6 dephosphorylation.
    Wlodarchak N; Guo F; Satyshur KA; Jiang L; Jeffrey PD; Sun T; Stanevich V; Mumby MC; Xing Y
    Cell Res; 2013 Jul; 23(7):931-46. PubMed ID: 23752926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of PP2A by a recurrent mutation drives resistance to MEK inhibitors.
    O'Connor CM; Leonard D; Wiredja D; Avelar RA; Wang Z; Schlatzer D; Bryson B; Tokala E; Taylor SE; Upadhyay A; Sangodkar J; Gingras AC; Westermarck J; Xu W; DiFeo A; Brautigan DL; Haider S; Jackson M; Narla G
    Oncogene; 2020 Jan; 39(3):703-717. PubMed ID: 31541192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of the scaffold subunit in facilitating protein phosphatase 2A methylation.
    Stanevich V; Zheng A; Guo F; Jiang L; Wlodarchak N; Xing Y
    PLoS One; 2014; 9(1):e86955. PubMed ID: 24466300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival.
    Strack S; Cribbs JT; Gomez L
    J Biol Chem; 2004 Nov; 279(46):47732-9. PubMed ID: 15364932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes.
    Adams DG; Coffee RL; Zhang H; Pelech S; Strack S; Wadzinski BE
    J Biol Chem; 2005 Dec; 280(52):42644-54. PubMed ID: 16239230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular determinants for PP2A substrate specificity: charged residues mediate dephosphorylation of tyrosine hydroxylase by the PP2A/B' regulatory subunit.
    Saraf A; Oberg EA; Strack S
    Biochemistry; 2010 Feb; 49(5):986-95. PubMed ID: 20017541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leucine Carboxyl Methyltransferase 1 (LCMT-1) Methylates Protein Phosphatase 4 (PP4) and Protein Phosphatase 6 (PP6) and Differentially Regulates the Stable Formation of Different PP4 Holoenzymes.
    Hwang J; Lee JA; Pallas DC
    J Biol Chem; 2016 Sep; 291(40):21008-21019. PubMed ID: 27507813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphatase 2A Aα regulates Aβ protein expression and stability.
    O'Connor CM; Hoffa MT; Taylor SE; Avelar RA; Narla G
    J Biol Chem; 2019 Apr; 294(15):5923-5934. PubMed ID: 30796164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vivo assay to quantify stable protein phosphatase 2A (PP2A) heterotrimeric species.
    Gentry MS; Hallberg RL; Pallas DC
    Methods Mol Biol; 2007; 365():71-83. PubMed ID: 17200555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.