BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36328297)

  • 1. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation.
    Turlin J; Dronsella B; De Maria A; Lindner SN; Nikel PI
    Metab Eng; 2022 Nov; 74():191-205. PubMed ID: 36328297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway.
    Bruinsma L; Wenk S; Claassens NJ; Martins Dos Santos VAP
    Metab Eng; 2023 Mar; 76():215-224. PubMed ID: 36804222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core and auxiliary functions of one-carbon metabolism in
    Turlin J; Puiggené Ò; Donati S; Wirth NT; Nikel PI
    mSystems; 2023 Jun; 8(3):e0000423. PubMed ID: 37273222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation.
    Claassens NJ; Satanowski A; Bysani VR; Dronsella B; Orsi E; Rainaldi V; Yilmaz S; Wenk S; Lindner SN
    Adv Biochem Eng Biotechnol; 2022; 180():299-350. PubMed ID: 35364693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.
    Yishai O; Goldbach L; Tenenboim H; Lindner SN; Bar-Even A
    ACS Synth Biol; 2017 Sep; 6(9):1722-1731. PubMed ID: 28558223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
    Claassens NJ; He H; Bar-Even A
    Curr Issues Mol Biol; 2019; 33():237-248. PubMed ID: 31166196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectrochemical conversion of CO
    Jang J; Jeon BW; Kim YH
    Sci Rep; 2018 May; 8(1):7211. PubMed ID: 29739951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assimilation of formic acid and CO
    Bang J; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9271-E9279. PubMed ID: 30224468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism.
    Nikel PI; de Lorenzo V
    Metab Eng; 2018 Nov; 50():142-155. PubMed ID: 29758287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic C2 auxotroph of Pseudomonas putida for evolutionary engineering of alternative sugar catabolic routes.
    Wirth NT; Gurdo N; Krink N; Vidal-Verdú À; Donati S; Férnandez-Cabezón L; Wulff T; Nikel PI
    Metab Eng; 2022 Nov; 74():83-97. PubMed ID: 36155822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
    Gonzalez de la Cruz J; Machens F; Messerschmidt K; Bar-Even A
    ACS Synth Biol; 2019 May; 8(5):911-917. PubMed ID: 31002757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO
    Bysani VR; Alam AS; Bar-Even A; Machens F
    Metab Eng; 2024 Jan; 81():167-181. PubMed ID: 38040111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Assimilation of One-Carbon via a Synthetic Reductive Glycine Pathway in Escherichia coli.
    Yishai O; Bouzon M; Döring V; Bar-Even A
    ACS Synth Biol; 2018 Sep; 7(9):2023-2028. PubMed ID: 29763299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture.
    Delmas VA; Perchat N; Monet O; Fouré M; Darii E; Roche D; Dubois I; Pateau E; Perret A; Döring V; Bouzon M
    Metab Eng; 2022 Jul; 72():200-214. PubMed ID: 35341982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems metabolic engineering of Corynebacterium glutamicum to assimilate formic acid for biomass accumulation and succinic acid production.
    Li K; Zhang X; Li C; Liang YC; Zhao XQ; Liu CG; Sinskey AJ; Bai FW
    Bioresour Technol; 2024 Jun; 402():130774. PubMed ID: 38701983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production.
    Tuyishime P; Sinumvayo JP
    World J Microbiol Biotechnol; 2020 Jul; 36(8):118. PubMed ID: 32681457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in metabolic engineering of microbial formate assimilation.
    Mao W; Yuan Q; Qi H; Wang Z; Ma H; Chen T
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6905-6917. PubMed ID: 32566995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of the β-hydroxyaspartate cycle increases growth performance of Pseudomonas putida on the PET monomer ethylene glycol.
    Schada von Borzyskowski L; Schulz-Mirbach H; Troncoso Castellanos M; Severi F; Gómez-Coronado PA; Paczia N; Glatter T; Bar-Even A; Lindner SN; Erb TJ
    Metab Eng; 2023 Mar; 76():97-109. PubMed ID: 36731627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bestowing inducibility on the cloned methanol dehydrogenase promoter (PmxaF) of Methylobacterium extorquens by applying regulatory elements of Pseudomonas putida F1.
    Choi YJ; Morel L; Bourque D; Mullick A; Massie B; Míguez CB
    Appl Environ Microbiol; 2006 Dec; 72(12):7723-9. PubMed ID: 17041156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.