These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36328323)
21. Malathion biodegradation by a psychrotolerant bacteria Ochrobactrum sp. M1D and metabolic pathway analysis. Verma S; Singh D; Chatterjee S Lett Appl Microbiol; 2021 Sep; 73(3):326-335. PubMed ID: 34060111 [TBL] [Abstract][Full Text] [Related]
22. Microbial degradation of acetamiprid by Ochrobactrum sp. D-12 isolated from contaminated soil. Wang G; Chen X; Yue W; Zhang H; Li F; Xiong M PLoS One; 2013; 8(12):e82603. PubMed ID: 24386105 [TBL] [Abstract][Full Text] [Related]
23. Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples. Ren L; Jia Y; Ruth N; Qiao C; Wang J; Zhao B; Yan Y Environ Sci Pollut Res Int; 2016 Aug; 23(16):16609-19. PubMed ID: 27178296 [TBL] [Abstract][Full Text] [Related]
24. Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. Pan X; Xu T; Xu H; Fang H; Yu Y Sci Total Environ; 2017 Aug; 592():593-599. PubMed ID: 28320527 [TBL] [Abstract][Full Text] [Related]
25. Biodegradability of di-(2-ethylhexyl) phthalate by a newly isolated bacterium Achromobacter sp. RX. Wang P; Gao J; Zhao Y; Zhang M; Zhou S Sci Total Environ; 2021 Feb; 755(Pt 1):142476. PubMed ID: 33035973 [TBL] [Abstract][Full Text] [Related]
27. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. Meng Y; Xu X; Niu D; Xu Y; Qiu Y; Zhu Z; Zhang H; Yin D Sci Total Environ; 2022 May; 819():153160. PubMed ID: 35051466 [TBL] [Abstract][Full Text] [Related]
28. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors. Kojima H; Takeuchi S; Itoh T; Iida M; Kobayashi S; Yoshida T Toxicology; 2013 Dec; 314(1):76-83. PubMed ID: 24051214 [TBL] [Abstract][Full Text] [Related]
29. Kinetics and New Mechanism of Azoxystrobin Biodegradation by an Feng Y; Zhang W; Pang S; Lin Z; Zhang Y; Huang Y; Bhatt P; Chen S Microorganisms; 2020 Apr; 8(5):. PubMed ID: 32357564 [TBL] [Abstract][Full Text] [Related]
30. A broad range of organophosphate tri- and di-esters in house dust from Adelaide, South Australia: Concentrations, compositions, and human exposure risks. Huang Y; Tan H; Li L; Yang L; Sun F; Li J; Gong X; Chen D Environ Int; 2020 Sep; 142():105872. PubMed ID: 32580118 [TBL] [Abstract][Full Text] [Related]
31. Biodegradation of diethyl terephthalate and polyethylene terephthalate by a novel identified degrader Delftia sp. WL-3 and its proposed metabolic pathway. Liu J; Xu G; Dong W; Xu N; Xin F; Ma J; Fang Y; Zhou J; Jiang M Lett Appl Microbiol; 2018 Sep; 67(3):254-261. PubMed ID: 29856468 [TBL] [Abstract][Full Text] [Related]
32. Organophosphate Diesters (Di-OPEs) Play a Critical Role in Understanding Global Organophosphate Esters (OPEs) in Fishmeal. Li X; Zhao N; Fu J; Liu Y; Zhang W; Dong S; Wang P; Su X; Fu J Environ Sci Technol; 2020 Oct; 54(19):12130-12141. PubMed ID: 32936633 [TBL] [Abstract][Full Text] [Related]
33. A green approach for organophosphate ester determination in airborne particulate matter: Microwave-assisted extraction using hydroalcoholic mixture coupled with solid-phase microextraction gas chromatography-tandem mass spectrometry. Naccarato A; Tassone A; Moretti S; Elliani R; Sprovieri F; Pirrone N; Tagarelli A Talanta; 2018 Nov; 189():657-665. PubMed ID: 30086975 [TBL] [Abstract][Full Text] [Related]
34. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants? Cristale J; Ramos DD; Dantas RF; Machulek Junior A; Lacorte S; Sans C; Esplugas S Environ Res; 2016 Jan; 144(Pt A):11-18. PubMed ID: 26540311 [TBL] [Abstract][Full Text] [Related]
35. Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Zhao HM; Du H; Lin J; Chen XB; Li YW; Li H; Cai QY; Mo CH; Qin HM; Wong MH Sci Total Environ; 2016 Aug; 562():170-178. PubMed ID: 27099998 [TBL] [Abstract][Full Text] [Related]
36. Primary biodegradation and mineralization of aryl organophosphate flame retardants by Rhodococcus-Sphingopyxis consortium. Wang J; Hlaing TS; Nwe MT; Aung MM; Ren C; Wu W; Yan Y J Hazard Mater; 2021 Jun; 412():125238. PubMed ID: 33550123 [TBL] [Abstract][Full Text] [Related]
37. One-step process for debromination and aerobic mineralization of tetrabromobisphenol-A by a novel Ochrobactrum sp. T isolated from an e-waste recycling site. An T; Zu L; Li G; Wan S; Mai B; Wong PK Bioresour Technol; 2011 Oct; 102(19):9148-54. PubMed ID: 21764300 [TBL] [Abstract][Full Text] [Related]
38. Nitenpyram biodegradation by a novel nitenpyram-degrading bacterium, Wang G; Chen M; Jiang L; Zhang Y Front Microbiol; 2023; 14():1209322. PubMed ID: 37520376 [TBL] [Abstract][Full Text] [Related]
39. Phthalic acid esters degradation by a novel marine bacterial strain Mycolicibacterium phocaicum RL-HY01: Characterization, metabolic pathway and bioaugmentation. Ren L; Wang G; Huang Y; Guo J; Li C; Jia Y; Chen S; Zhou JL; Hu H Sci Total Environ; 2021 Oct; 791():148303. PubMed ID: 34118676 [TBL] [Abstract][Full Text] [Related]
40. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP). Knudsen GA; Hughes MF; Sanders JM; Hall SM; Birnbaum LS Toxicol Appl Pharmacol; 2016 Nov; 311():117-127. PubMed ID: 27732871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]