BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36328889)

  • 1. Characterizing Viscoelastic Polyvinyl Alcohol Phantoms for Ultrasound Elastography.
    Sharma A; Marapureddy SG; Paul A; Bisht SR; Kakkar M; Thareja P; Mercado-Shekhar KP
    Ultrasound Med Biol; 2023 Feb; 49(2):497-511. PubMed ID: 36328889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic Characterization of Phantoms for Ultrasound Elastography Created Using Low- and High-Viscosity Poly(vinyl alcohol) with Ethylene Glycol as the Cryoprotectant.
    Bisht SR; Marri BP; Karmakar J; Mercado Shekhar KP
    ACS Omega; 2024 Feb; 9(7):8352-8361. PubMed ID: 38405437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties.
    Cournane S; Cannon L; Browne JE; Fagan AJ
    Phys Med Biol; 2010 Oct; 55(19):5965-83. PubMed ID: 20858913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings.
    Fromageau J; Gennisson JL; Schmitt C; Maurice RL; Mongrain R; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):498-509. PubMed ID: 17375819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of the soft tissue viscous and elastic properties using ultrasound elastography and rheological models: validation and applications in plantar soft tissue assessment.
    Tecse A; Romero SE; Naemi R; Castaneda B
    Phys Med Biol; 2023 May; 68(10):. PubMed ID: 36996846
    [No Abstract]   [Full Text] [Related]  

  • 6. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization.
    Chatelin S; Bernal M; Deffieux T; Papadacci C; Flaud P; Nahas A; Boccara C; Gennisson JL; Tanter M; Pernot M
    Phys Med Biol; 2014 Nov; 59(22):6923-40. PubMed ID: 25350315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging.
    Surry KJ; Austin HJ; Fenster A; Peters TM
    Phys Med Biol; 2004 Dec; 49(24):5529-46. PubMed ID: 15724540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic and Elastic Properties of Glycerol in Oil-Based Gel Phantoms.
    Cabrelli LC; Grillo FW; Sampaio DRT; Carneiro AAO; Pavan TZ
    Ultrasound Med Biol; 2017 Sep; 43(9):2086-2094. PubMed ID: 28648918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of PVA cryogel Young's modulus stability with time, controlled by a simple reliable technique.
    Duboeuf F; Basarab A; Liebgott H; Brusseau E; Delachartre P; Vray D
    Med Phys; 2009 Feb; 36(2):656-61. PubMed ID: 19292007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copolymer-in-oil phantom materials for elastography.
    Oudry J; Bastard C; Miette V; Willinger R; Sandrin L
    Ultrasound Med Biol; 2009 Jul; 35(7):1185-97. PubMed ID: 19427100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of PVA cryogel for intravascular ultrasound elasticity imaging.
    Fromageau J; Brusseau E; Vray D; Gimenez G; Delachartre P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1318-24. PubMed ID: 14609071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the homogeneity of tissue-mimicking cryogel phantoms for medical imaging.
    Minton JA; Iravani A; Yousefi AM
    Med Phys; 2012 Nov; 39(11):6796-807. PubMed ID: 23130805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacturing Abdominal Aorta Hydrogel Tissue-Mimicking Phantoms for Ultrasound Elastography Validation.
    Mix DS; Stoner MC; Day SW; Richards MS
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30295670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a vessel-mimicking material for use in anatomically realistic Doppler flow phantoms.
    King DM; Moran CM; McNamara JD; Fagan AJ; Browne JE
    Ultrasound Med Biol; 2011 May; 37(5):813-26. PubMed ID: 21497719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyvinyl alcohol cryogel based vessel mimicking material for modelling the progression of atherosclerosis.
    Malone AJ; Cournane S; Naydenova IG; Fagan AJ; Browne JE
    Phys Med; 2020 Jan; 69():1-8. PubMed ID: 31811996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimodal microwave and ultrasound phantoms for non-invasive clinical imaging.
    Villa E; Arteaga-Marrero N; González-Fernández J; Ruiz-Alzola J
    Sci Rep; 2020 Nov; 10(1):20401. PubMed ID: 33230246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.