These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans. Usman M; Rehman A; Saleem AM; Jawaid R; Byon SS; Kim SH; Lee BD; Heo MS; Shin YG Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560251 [TBL] [Abstract][Full Text] [Related]
5. Deep learning-based evaluation of the relationship between mandibular third molar and mandibular canal on CBCT. Liu MQ; Xu ZN; Mao WY; Li Y; Zhang XH; Bai HL; Ding P; Fu KY Clin Oral Investig; 2022 Jan; 26(1):981-991. PubMed ID: 34312683 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT. Lahoud P; Diels S; Niclaes L; Van Aelst S; Willems H; Van Gerven A; Quirynen M; Jacobs R J Dent; 2022 Jan; 116():103891. PubMed ID: 34780873 [TBL] [Abstract][Full Text] [Related]
7. Towards clinically applicable automated mandibular canal segmentation on CBCT. Ni FD; Xu ZN; Liu MQ; Zhang MJ; Li S; Bai HL; Ding P; Fu KY J Dent; 2024 May; 144():104931. PubMed ID: 38458378 [TBL] [Abstract][Full Text] [Related]
8. A unique artificial intelligence-based tool for automated CBCT segmentation of mandibular incisive canal. Jindanil T; Marinho-Vieira LE; de-Azevedo-Vaz SL; Jacobs R Dentomaxillofac Radiol; 2023 Nov; 52(8):20230321. PubMed ID: 37870152 [TBL] [Abstract][Full Text] [Related]
9. Accurate mandibular canal segmentation of dental CBCT using a two-stage 3D-UNet based segmentation framework. Lin X; Xin W; Huang J; Jing Y; Liu P; Han J; Ji J BMC Oral Health; 2023 Aug; 23(1):551. PubMed ID: 37563606 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of deep learning-based integrated tooth models by merging intraoral scans and CBCT scans for 3D evaluation of root position during orthodontic treatment. Lee SC; Hwang HS; Lee KC Prog Orthod; 2022 May; 23(1):15. PubMed ID: 35527317 [TBL] [Abstract][Full Text] [Related]
11. Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning. Wang H; Minnema J; Batenburg KJ; Forouzanfar T; Hu FJ; Wu G J Dent Res; 2021 Aug; 100(9):943-949. PubMed ID: 33783247 [TBL] [Abstract][Full Text] [Related]
12. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. Verhelst PJ; Smolders A; Beznik T; Meewis J; Vandemeulebroucke A; Shaheen E; Van Gerven A; Willems H; Politis C; Jacobs R J Dent; 2021 Nov; 114():103786. PubMed ID: 34425172 [TBL] [Abstract][Full Text] [Related]
13. Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network. Jeoun BS; Yang S; Lee SJ; Kim TI; Kim JM; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ Sci Rep; 2022 Aug; 12(1):13460. PubMed ID: 35931733 [TBL] [Abstract][Full Text] [Related]
14. Detection of various anatomic patterns of root canals in mandibular incisors using digital periapical radiography, 3 cone-beam computed tomographic scanners, and micro-computed tomographic imaging. Paes da Silva Ramos Fernandes LM; Rice D; Ordinola-Zapata R; Alvares Capelozza AL; Bramante CM; Jaramillo D; Christensen H J Endod; 2014 Jan; 40(1):42-5. PubMed ID: 24331989 [TBL] [Abstract][Full Text] [Related]
15. Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - A validation study. Fontenele RC; Gerhardt MDN; Pinto JC; Van Gerven A; Willems H; Jacobs R; Freitas DQ J Dent; 2022 Apr; 119():104069. PubMed ID: 35183696 [TBL] [Abstract][Full Text] [Related]
16. Efficient high cone-angle artifact reduction in circular cone-beam CT using deep learning with geometry-aware dimension reduction. Minnema J; van Eijnatten M; der Sarkissian H; Doyle S; Koivisto J; Wolff J; Forouzanfar T; Lucka F; Batenburg KJ Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34107467 [TBL] [Abstract][Full Text] [Related]
17. Validation of a 3D CBCT-based protocol for the follow-up of mandibular condyle remodeling. Verhelst PJ; Shaheen E; de Faria Vasconcelos K; Van der Cruyssen F; Shujaat S; Coudyzer W; Salmon B; Swennen G; Politis C; Jacobs R Dentomaxillofac Radiol; 2020 Mar; 49(3):20190364. PubMed ID: 31674794 [TBL] [Abstract][Full Text] [Related]
18. Age estimation based on 3D pulp chamber segmentation of first molars from cone-beam-computed tomography by integrated deep learning and level set. Zheng Q; Ge Z; Du H; Li G Int J Legal Med; 2021 Jan; 135(1):365-373. PubMed ID: 33185706 [TBL] [Abstract][Full Text] [Related]
19. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]