BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36329261)

  • 1. Novel Probiotic Lactic Acid Bacteria with In Vitro Bioremediation Potential of Toxic Lead and Cadmium.
    Hasan MS; Islam MZ; Liza RI; Sarker MAH; Islam MA; Harun-Ur-Rashid M
    Curr Microbiol; 2022 Nov; 79(12):387. PubMed ID: 36329261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of indigenous probiotic Lactobacillus strains to reduce cadmium bioaccessibility - An in vitro digestion model.
    Kumar N; Kumar V; Panwar R; Ram C
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1241-1250. PubMed ID: 27770327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents.
    Bhakta JN; Ohnishi K; Munekage Y; Iwasaki K; Wei MQ
    J Appl Microbiol; 2012 Jun; 112(6):1193-206. PubMed ID: 22404232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity.
    Li B; Jin D; Yu S; Etareri Evivie S; Muhammad Z; Huo G; Liu F
    Nutrients; 2017 Aug; 9(8):. PubMed ID: 28786945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probiotic Characterization of Arsenic-resistant Lactic Acid Bacteria for Possible Application as Arsenic Bioremediation Tool in Fish for Safe Fish Food Production.
    Bhakta JN; Bhattacharya S; Lahiri S; Panigrahi AK
    Probiotics Antimicrob Proteins; 2023 Aug; 15(4):889-902. PubMed ID: 35119613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic susceptibility and bioremediation potential of probiotic bacteria against lead and cadmium isolated from yogurt.
    Wahid M; Usama Awais M; Talat R; Mehmood A; Haq I; A Al Farraj D; Eissa Mohammed YH; Banach A
    Pak J Pharm Sci; 2023 May; 36(3(Special)):969-972. PubMed ID: 37587706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities.
    Ojekunle O; Banwo K; Sanni AI
    Lett Appl Microbiol; 2017 May; 64(5):379-385. PubMed ID: 28276067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein.
    Kinoshita H; Sohma Y; Ohtake F; Ishida M; Kawai Y; Kitazawa H; Saito T; Kimura K
    Res Microbiol; 2013 Sep; 164(7):701-9. PubMed ID: 23603782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of Lactic Acid Bacteria Isolated from the Gut of Cyprinus carpio That May Be Effective Against Lead Toxicity.
    Giri SS; Jun JW; Yun S; Kim HJ; Kim SG; Kang JW; Kim SW; Han SJ; Park SC; Sukumaran V
    Probiotics Antimicrob Proteins; 2019 Mar; 11(1):65-73. PubMed ID: 29285742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of cadmium and lead by
    Daisley BA; Monachese M; Trinder M; Bisanz JE; Chmiel JA; Burton JP; Reid G
    Gut Microbes; 2019; 10(3):321-333. PubMed ID: 30426826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity.
    Yi YJ; Lim JM; Gu S; Lee WK; Oh E; Lee SM; Oh BT
    J Microbiol; 2017 Apr; 55(4):296-303. PubMed ID: 28361342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of
    Heidari P; Panico A
    Int J Environ Res Public Health; 2020 Jun; 17(11):. PubMed ID: 32517236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Resistance and Bioremediation Ability of
    Kirillova AV; Danilushkina AA; Irisov DS; Bruslik NL; Fakhrullin RF; Zakharov YA; Bukhmin VS; Yarullina DR
    Int J Microbiol; 2017; 2017():9869145. PubMed ID: 28133483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Probiotic Potential of
    Wu C; Dai C; Tong L; Lv H; Zhou X
    Pol J Microbiol; 2022 Mar; 71(1):91-105. PubMed ID: 35635173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: the influence of cooking and additives.
    Fu J; Cui Y
    Food Chem Toxicol; 2013 Sep; 59():215-21. PubMed ID: 23791752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts.
    Kumar N; Kumari V; Ram C; Thakur K; Tomar SK
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1599-1615. PubMed ID: 29352397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Cd and Pb on soil microbial community structure and activities.
    Khan S; Hesham Ael-L; Qiao M; Rehman S; He JZ
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):288-96. PubMed ID: 19333640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of Heavy Metals by Lactic Acid Bacteria for Detoxification.
    Kinoshita H
    Methods Mol Biol; 2019; 1887():145-157. PubMed ID: 30506256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead and cadmium-resistant bacterial species isolated from heavy metal-contaminated soils show plant growth-promoting traits.
    Abdollahi S; Golchin A; Shahryari F
    Int Microbiol; 2020 Nov; 23(4):625-640. PubMed ID: 32533267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol removal by some lactic acid bacteria that can be used as probiotic.
    Tok E; Aslim B
    Microbiol Immunol; 2010 May; 54(5):257-64. PubMed ID: 20536722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.