These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36329528)

  • 1. XGBCDA: a multiple heterogeneous networks-based method for predicting circRNA-disease associations.
    Shen S; Liu J; Zhou C; Qian Y; Deng L
    BMC Med Genomics; 2022 Nov; 13(Suppl 1):196. PubMed ID: 36329528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GBDTCDA: Predicting circRNA-disease Associations Based on Gradient Boosting Decision Tree with Multiple Biological Data Fusion.
    Lei X; Fang Z
    Int J Biol Sci; 2019; 15(13):2911-2924. PubMed ID: 31853227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations.
    Lei X; Fang Z; Chen L; Wu FX
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of multiple heterogeneous networks for predicting circRNA-disease associations.
    Deng L; Zhang W; Shi Y; Tang Y
    Sci Rep; 2019 Jul; 9(1):9605. PubMed ID: 31270357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SGANRDA: semi-supervised generative adversarial networks for predicting circRNA-disease associations.
    Wang L; Yan X; You ZH; Zhou X; Li HY; Huang YA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33734296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MPCLCDA: predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning.
    Liu W; Tang T; Lu X; Fu X; Yang Y; Peng L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNMFLP: Predicting circRNA-disease associations based on robust nonnegative matrix factorization and label propagation.
    Peng L; Yang C; Huang L; Chen X; Fu X; Liu W
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35534179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of circRNA-disease associations based on inductive matrix completion.
    Li M; Liu M; Bin Y; Xia J
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):42. PubMed ID: 32241268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating Bipartite Network Projection and KATZ Measure to Identify Novel CircRNA-Disease Associations.
    Zhao Q; Yang Y; Ren G; Ge E; Fan C
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):578-584. PubMed ID: 31199265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IMS-CDA: Prediction of CircRNA-Disease Associations From the Integration of Multisource Similarity Information With Deep Stacked Autoencoder Model.
    Wang L; You ZH; Li JQ; Huang YA
    IEEE Trans Cybern; 2021 Nov; 51(11):5522-5531. PubMed ID: 33027025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iGRLCDA: identifying circRNA-disease association based on graph representation learning.
    Zhang HY; Wang L; You ZH; Hu L; Zhao BW; Li ZW; Li YM
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential circRNA-disease association prediction using DeepWalk and network consistency projection.
    Li G; Luo J; Wang D; Liang C; Xiao Q; Ding P; Chen H
    J Biomed Inform; 2020 Dec; 112():103624. PubMed ID: 33217543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network.
    Lan W; Zhang H; Dong Y; Chen Q; Cao J; Peng W; Liu J; Li M
    Methods; 2022 Dec; 208():35-41. PubMed ID: 36280134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.