These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 36329748)
1. Application and extension of the UTAUT2 model for determining behavioral intention factors in use of the artificial intelligence virtual assistants. García de Blanes Sebastián M; Sarmiento Guede JR; Antonovica A Front Psychol; 2022; 13():993935. PubMed ID: 36329748 [TBL] [Abstract][Full Text] [Related]
2. Investigating older adults users' willingness to adopt wearable devices by integrating the technology acceptance model (UTAUT2) and the Technology Readiness Index theory. Wu C; Lim GG Front Public Health; 2024; 12():1449594. PubMed ID: 39421816 [TBL] [Abstract][Full Text] [Related]
4. The adoption of conversational assistants in the banking industry: is the perceived risk a moderator? Hasan S; Godhuli ER; Rahman MS; Mamun MAA Heliyon; 2023 Sep; 9(9):e20220. PubMed ID: 37810016 [TBL] [Abstract][Full Text] [Related]
5. Assessing AI adoption in developing country academia: A trust and privacy-augmented UTAUT framework. Rana MM; Siddiqee MS; Sakib MN; Ahamed MR Heliyon; 2024 Sep; 10(18):e37569. PubMed ID: 39315142 [TBL] [Abstract][Full Text] [Related]
6. Analyzing the determinants to accept a virtual assistant and use cases among cancer patients: a mixed methods study. van Bussel MJP; Odekerken-Schröder GJ; Ou C; Swart RR; Jacobs MJG BMC Health Serv Res; 2022 Jul; 22(1):890. PubMed ID: 35804356 [TBL] [Abstract][Full Text] [Related]
7. Factors influencing the continuance intention of the women's health WeChat public account: an integrated model of UTAUT2 and HBM. Min H; Li J; Di M; Huang S; Sun X; Li T; Wu Y Front Public Health; 2024; 12():1348673. PubMed ID: 38966697 [TBL] [Abstract][Full Text] [Related]
8. Empirical Investigation of Factors Influencing Consumer Intention to Use an Artificial Intelligence-Powered Mobile Application for Weight Loss and Health Management. Huang CY; Yang MC Telemed J E Health; 2020 Oct; 26(10):1240-1251. PubMed ID: 31971883 [No Abstract] [Full Text] [Related]
9. Factors Influencing the Acceptability, Acceptance, and Adoption of Conversational Agents in Health Care: Integrative Review. Wutz M; Hermes M; Winter V; Köberlein-Neu J J Med Internet Res; 2023 Sep; 25():e46548. PubMed ID: 37751279 [TBL] [Abstract][Full Text] [Related]
10. The effect of trust, IT knowledge, and entrepreneur's innovativeness to embrace or shun the internet of things. Abushakra A; Nikbin D; Odeh A; Abdulwahab R Front Psychol; 2022; 13():1035015. PubMed ID: 36506957 [TBL] [Abstract][Full Text] [Related]
11. Modifying UTAUT2 for a cross-country comparison of telemedicine adoption. Schmitz A; Díaz-Martín AM; Yagüe Guillén MJ Comput Human Behav; 2022 May; 130():107183. PubMed ID: 35017788 [TBL] [Abstract][Full Text] [Related]
12. What Factors Affect a User's Intention to Use Fitness Applications? The Moderating Effect of Health Status: A Cross-Sectional Study. Kim B; Lee E Inquiry; 2022; 59():469580221095826. PubMed ID: 35580021 [TBL] [Abstract][Full Text] [Related]
13. Acceptance of mobile commerce in low-income consumers: evidence from an emerging economy. Dakduk S; Santalla-Banderali Z; Siqueira JR Heliyon; 2020 Nov; 6(11):e05451. PubMed ID: 33235935 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of variables that influence behavioral intention to use MOOCs. Chaveesuk S; Khalid B; Bsoul-Kopowska M; Rostańska E; Chaiyasoonthorn W PLoS One; 2022; 17(4):e0262037. PubMed ID: 35413049 [TBL] [Abstract][Full Text] [Related]
15. Understanding the predictors of health professionals' intention to use electronic health record system: extend and apply UTAUT3 model. Ngusie HS; Kassie SY; Zemariam AB; Walle AD; Enyew EB; Kasaye MD; Seboka BT; Mengiste SA BMC Health Serv Res; 2024 Aug; 24(1):889. PubMed ID: 39097725 [TBL] [Abstract][Full Text] [Related]
16. Factors affecting the acceptance of blended learning in medical education: application of UTAUT2 model. Azizi SM; Roozbahani N; Khatony A BMC Med Educ; 2020 Oct; 20(1):367. PubMed ID: 33066768 [TBL] [Abstract][Full Text] [Related]
17. Factors Affecting User's Behavioral Intention and Use of a Mobile-Phone-Delivered Cognitive Behavioral Therapy for Insomnia: A Small-Scale UTAUT Analysis. Fitrianie S; Horsch C; Beun RJ; Griffioen-Both F; Brinkman WP J Med Syst; 2021 Nov; 45(12):110. PubMed ID: 34767084 [TBL] [Abstract][Full Text] [Related]
18. How Does Interactivity Shape Users' Continuance Intention of Intelligent Voice Assistants? Evidence from SEM and fsQCA. Kang W; Shao B; Zhang Y Psychol Res Behav Manag; 2024; 17():867-889. PubMed ID: 38481599 [TBL] [Abstract][Full Text] [Related]
19. Extension of the Unified Theory of Acceptance and Use of Technology 2 model for predicting mHealth acceptance using diabetes as an example: a cross-sectional validation study. Schretzlmaier P; Hecker A; Ammenwerth E BMJ Health Care Inform; 2022 Nov; 29(1):. PubMed ID: 36379608 [TBL] [Abstract][Full Text] [Related]
20. Keep Using My Health Apps: Discover Users' Perception of Health and Fitness Apps with the UTAUT2 Model. Yuan S; Ma W; Kanthawala S; Peng W Telemed J E Health; 2015 Sep; 21(9):735-41. PubMed ID: 25919238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]