These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36329940)

  • 1. Current state of copper-based bimetallic materials for electrochemical CO
    Zoubir O; Atourki L; Ait Ahsaine H; BaQais A
    RSC Adv; 2022 Oct; 12(46):30056-30075. PubMed ID: 36329940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimetallic Electrocatalysts for CO
    Zhu W; Tackett BM; Chen JG; Jiao F
    Top Curr Chem (Cham); 2018 Oct; 376(6):41. PubMed ID: 30361990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Bimetallic Cu-Based Nanocrystals for Electrocatalytic CO
    Talukdar B; Mendiratta S; Huang MH; Kuo CH
    Chem Asian J; 2021 Aug; 16(16):2168-2184. PubMed ID: 34184830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO
    Nabi AG; Aman-Ur-Rehman ; Hussain A; Chass GA; Di Tommaso D
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking heterogeneous structural motifs and the redox behaviour of copper-zinc nanocatalysts for the electrocatalytic CO
    Rüscher M; Herzog A; Timoshenko J; Jeon HS; Frandsen W; Kühl S; Roldan Cuenya B
    Catal Sci Technol; 2022 May; 12(9):3028-3043. PubMed ID: 35662799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-Covered Copper Catalysts Alter the Reaction Pathway of the Electrochemical CO
    Jun M; Kim D; Kim M; Kim M; Kwon T; Lee K
    ACS Omega; 2022 Nov; 7(47):42655-42663. PubMed ID: 36467922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects.
    Kong Q; An X; Liu Q; Xie L; Zhang J; Li Q; Yao W; Yu A; Jiao Y; Sun C
    Mater Horiz; 2023 Mar; 10(3):698-721. PubMed ID: 36601800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Wu J; Huang Y; Ye W; Li Y
    Adv Sci (Weinh); 2017 Nov; 4(11):1700194. PubMed ID: 29201614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO
    Xie L; Liang J; Priest C; Wang T; Ding D; Wu G; Li Q
    Chem Commun (Camb); 2021 Feb; 57(15):1839-1854. PubMed ID: 33527108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO
    Chen H; Mo P; Zhu J; Xu X; Cheng Z; Yang F; Xu Z; Liu J; Wang L
    Small; 2024 Aug; 20(34):e2400661. PubMed ID: 38597688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Local Electric Field Induced by Dual Heteroatoms on Copper Boosts Efficient CO
    Xie F; Wang Z; Kao CW; Lan J; Lu YR; Tan Y
    Angew Chem Int Ed Engl; 2024 Sep; 63(37):e202407661. PubMed ID: 38924201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Design of Copper Active Sites in Pristine Metal-Organic Coordination Compounds for Electrocatalytic Carbon Dioxide Reduction.
    Wang J; Wa Q; Diao Q; Liu F; Hao F; Xiong Y; Wang Y; Zhou J; Meng X; Guo L; Fan Z
    Small Methods; 2024 May; ():e2400432. PubMed ID: 38767183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO
    Kim C; Dionigi F; Beermann V; Wang X; Möller T; Strasser P
    Adv Mater; 2019 Aug; 31(31):e1805617. PubMed ID: 30570788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical conversion of CO
    Nguyen DLT; Nguyen TM; Lee SY; Kim J; Kim SY; Le QV; Varma RS; Hwang YJ
    Environ Res; 2022 Aug; 211():113116. PubMed ID: 35304112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper⁻Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide.
    Wang Y; Niu C; Zhu Y
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30704109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 3D Porous Cu Nanostructures on Ag Thin Film Using Dynamic Hydrogen Bubble Template for Electrochemical Conversion of CO
    Rahmati F; Sabouhanian N; Lipkowski J; Chen A
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Surface Oxophilicity of Copper for Electrochemical CO
    Li M; Song N; Luo W; Chen J; Jiang W; Yang J
    Adv Sci (Weinh); 2023 Jan; 10(2):e2204579. PubMed ID: 36394094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alloying strategies for tuning product selectivity during electrochemical CO
    Mosali VSS; Bond AM; Zhang J
    Nanoscale; 2022 Nov; 14(42):15560-15585. PubMed ID: 36254597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.