These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS. Filipiak W; Sponring A; Baur MM; Ager C; Filipiak A; Wiesenhofer H; Nagl M; Troppmair J; Amann A Microbiology (Reading); 2012 Dec; 158(Pt 12):3044-3053. PubMed ID: 23059976 [TBL] [Abstract][Full Text] [Related]
9. Molecular Analysis of Volatile Metabolites Synthesized by Filipiak W; Wenzel M; Ager C; Mayhew CA; Bogiel T; Włodarski R; Nagl M Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062502 [TBL] [Abstract][Full Text] [Related]
10. Rapid Identification of Carbapenemase-Producing Luo H; Hang Y; Zhu H; Zhong Q; Peng S; Gu S; Fang X; Hu L Infect Drug Resist; 2023; 16():2601-2609. PubMed ID: 37152404 [TBL] [Abstract][Full Text] [Related]
11. Qualitative and quantitative rapid detection of VOCs differentially released by VAP-associated bacteria using PTR-MS and FGC-PTR-MS. Xu W; Zou X; Ding Y; Zhang Q; Song Y; Zhang J; Yang M; Liu Z; Zhou Q; Ge D; Zhang Q; Song W; Huang C; Shen C; Chu Y Analyst; 2024 Feb; 149(5):1447-1454. PubMed ID: 38197456 [TBL] [Abstract][Full Text] [Related]
12. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. Boots AW; Smolinska A; van Berkel JJ; Fijten RR; Stobberingh EE; Boumans ML; Moonen EJ; Wouters EF; Dallinga JW; Van Schooten FJ J Breath Res; 2014 Jun; 8(2):027106. PubMed ID: 24737039 [TBL] [Abstract][Full Text] [Related]
13. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS. Ratiu IA; Bocos-Bintintan V; Patrut A; Moll VH; Turner M; Thomas CLP Anal Chim Acta; 2017 Aug; 982():209-217. PubMed ID: 28734362 [TBL] [Abstract][Full Text] [Related]
14. Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: a prospective pilot study. Filipiak W; Beer R; Sponring A; Filipiak A; Ager C; Schiefecker A; Lanthaler S; Helbok R; Nagl M; Troppmair J; Amann A J Breath Res; 2015 Jan; 9(1):016004. PubMed ID: 25557917 [TBL] [Abstract][Full Text] [Related]
15. Volatile organic compounds in headspace characterize isolated bacterial strains independent of growth medium or antibiotic sensitivity. Hintzen KFH; Blanchet L; Smolinska A; Boumans ML; Stobberingh EE; Dallinga JW; Lubbers T; van Schooten FJ; Boots AW PLoS One; 2024; 19(1):e0297086. PubMed ID: 38277384 [TBL] [Abstract][Full Text] [Related]
16. A Phylogenetic and Functional Perspective on Volatile Organic Compound Production by Choudoir M; Rossabi S; Gebert M; Helmig D; Fierer N mSystems; 2019; 4(2):. PubMed ID: 30863793 [TBL] [Abstract][Full Text] [Related]
17. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. Tait E; Perry JD; Stanforth SP; Dean JR J Chromatogr Sci; 2014 Apr; 52(4):363-73. PubMed ID: 23661670 [TBL] [Abstract][Full Text] [Related]
18. Freeze-drying: an alternative method for the analysis of volatile organic compounds in the headspace of urine samples using solid phase micro-extraction coupled to gas chromatography - mass spectrometry. Aggio RB; Mayor A; Coyle S; Reade S; Khalid T; Ratcliffe NM; Probert CS Chem Cent J; 2016; 10():9. PubMed ID: 26933445 [TBL] [Abstract][Full Text] [Related]