These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36330327)

  • 21. A new approach to model cross-linked actin networks: multi-scale continuum formulation and computational analysis.
    Unterberger MJ; Schmoller KM; Bausch AR; Holzapfel GA
    J Mech Behav Biomed Mater; 2013 Jun; 22():95-114. PubMed ID: 23601624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations.
    Zarei V; Zhang S; Winkelstein BA; Barocas VH
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstructure-based hyperelastic models for closed-cell solids.
    Mihai LA; Wyatt H; Goriely A
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20170036. PubMed ID: 28484340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A micro-mechanical model for the fibrous tissues of vocal folds.
    Terzolo A; Bailly L; Orgéas L; Cochereau T; Henrich Bernardoni N
    J Mech Behav Biomed Mater; 2022 Apr; 128():105118. PubMed ID: 35228060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening.
    van Oosten AS; Vahabi M; Licup AJ; Sharma A; Galie PA; MacKintosh FC; Janmey PA
    Sci Rep; 2016 Jan; 6():19270. PubMed ID: 26758452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elastic regimes of subisostatic athermal fiber networks.
    Licup AJ; Sharma A; MacKintosh FC
    Phys Rev E; 2016 Jan; 93(1):012407. PubMed ID: 26871101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An affine micro-sphere-based constitutive model, accounting for junctional sliding, can capture F-actin network mechanics.
    Van Oosterwyck H; Rodríguez JF; Doblaré M; García Aznar JM
    Comput Methods Biomech Biomed Engin; 2013; 16(9):1002-12. PubMed ID: 22316054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The intrinsic quality of proteoglycans, but not collagen fibres, degrades in osteoarthritic cartilage.
    Moo EK; Ebrahimi M; Sibole SC; Tanska P; Korhonen RK
    Acta Biomater; 2022 Nov; 153():178-189. PubMed ID: 36113721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load.
    Krasny W; Morin C; Magoariec H; Avril S
    Acta Biomater; 2017 Jul; 57():342-351. PubMed ID: 28499632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear mechanics of soft fibrous networks.
    Kabla A; Mahadevan L
    J R Soc Interface; 2007 Feb; 4(12):99-106. PubMed ID: 17015287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix.
    Shi L; Hu L; Lee N; Fang S; Myers K
    Acta Biomater; 2022 Sep; 150():277-294. PubMed ID: 35931278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fibrous gels modelled as fluid-filled continua with double-well energy landscape.
    Sun C; Chernysh IN; Weisel JW; Purohit PK
    Proc Math Phys Eng Sci; 2020 Dec; 476(2244):20200643. PubMed ID: 33408566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
    Khayyeri H; Gustafsson A; Heuijerjans A; Matikainen MK; Julkunen P; Eliasson P; Aspenberg P; Isaksson H
    PLoS One; 2015; 10(6):e0126869. PubMed ID: 26030436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ability of Constitutive Models to Characterize the Temperature Dependence of Rubber Hyperelasticity and to Predict the Stress-Strain Behavior of Filled Rubber under Different Defor Mation States.
    Fu X; Wang Z; Ma L
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33503897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Normal stress anisotropy and marginal stability in athermal elastic networks.
    Shivers JL; Feng J; Sharma A; MacKintosh FC
    Soft Matter; 2019 Feb; 15(7):1666-1675. PubMed ID: 30680381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.
    Perepelyuk M; Chin L; Cao X; van Oosten A; Shenoy VB; Janmey PA; Wells RG
    PLoS One; 2016; 11(1):e0146588. PubMed ID: 26735954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.