BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36330394)

  • 1. Identifying and validating key genes mediating intracranial aneurysm rupture using weighted correlation network analysis and exploration of personalized treatment.
    Wu J; Chen ZJ; Liang J; Lai CS; Li XY; Yang ZJ
    Ann Transl Med; 2022 Oct; 10(19):1057. PubMed ID: 36330394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and validation of key genes mediating intracranial aneurysm rupture by weighted correlation network analysis.
    Chen S; Yang D; Liu B; Wang L; Chen Y; Ye W; Liu C; Ni L; Zhang X; Zheng Y
    Ann Transl Med; 2020 Nov; 8(21):1407. PubMed ID: 33313152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epithelial-mesenchymal transition related genes in unruptured aneurysms identified through weighted gene coexpression network analysis.
    Jiang Y; Leng J; Lin Q; Zhou F
    Sci Rep; 2022 Jan; 12(1):225. PubMed ID: 34997174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential Role of the Chemotaxis System in Formation and Progression of Intracranial Aneurysms Through Weighted Gene Co-Expression Network Analysis.
    Zhu H; Tan J; Zhao Y; Wang Z; Wu Z; Li M
    Int J Gen Med; 2022; 15():2217-2231. PubMed ID: 35250300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Analysis of Regulated Cell Death in Intracranial Aneurysms.
    Zhu J; Wang Z; Li J; Kang D
    Front Biosci (Landmark Ed); 2023 Nov; 28(11):289. PubMed ID: 38062817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying pyroptosis- and inflammation-related genes in intracranial aneurysms based on bioinformatics analysis.
    Zhou D; Zhu Y; Jiang P; Zhang T; Zhuang J; Li T; Qi L; Wang Y
    Biol Res; 2023 Sep; 56(1):50. PubMed ID: 37752552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and Validation of a New Model for the Prediction of Rupture in Patients with Intracranial Aneurysms.
    Niu S; Zhao Y; Ma B; Zhang R; Rong Z; Ni L; Di X; Liu C
    World Neurosurg; 2021 May; 149():e437-e446. PubMed ID: 33567366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of potential key pathways, genes and circulating markers in the development of intracranial aneurysm based on weighted gene co-expression network analysis.
    Du G; Geng D; Zhou K; Fan Y; Su R; Zhou Q; Liu B; Duysenbi S
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):999-1007. PubMed ID: 32589050
    [No Abstract]   [Full Text] [Related]  

  • 9. A Two-Gene-Based Diagnostic Signature for Ruptured Intracranial Aneurysms.
    Li Y; Qin J
    Front Cardiovasc Med; 2021; 8():671655. PubMed ID: 34485395
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of crucial genes in intracranial aneurysm based on weighted gene coexpression network analysis.
    Zheng X; Xue C; Luo G; Hu Y; Luo W; Sun X
    Cancer Gene Ther; 2015 May; 22(5):238-45. PubMed ID: 25721208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms.
    Guo T; Hou D; Yu D
    Mol Med Rep; 2019 Nov; 20(5):4415-4424. PubMed ID: 31545495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Transcriptional Profiling Analysis and Immune-Related Risk Model Construction for Intracranial Aneurysm Rupture.
    Shan D; Guo X; Yang G; He Z; Zhao R; Xue H; Li G
    Front Neurosci; 2021; 15():613329. PubMed ID: 33867914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of immune-related biological markers for aneurysmal subarachnoid hemorrhage based on machine learning approaches.
    Liu J; Sun Z; Hong Y; Zhao Y; Wang S; Liu B; Zheng Y
    Biochem Biophys Rep; 2023 Dec; 36():101564. PubMed ID: 38024864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Subtypes and Machine Learning-Based Predictive Models for Intracranial Aneurysm Rupture.
    Zhong A; Wang F; Zhou Y; Ding N; Yang G; Chai X
    World Neurosurg; 2023 Nov; 179():e166-e186. PubMed ID: 37597661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Potential Core Genes for the Rupture of Intracranial Aneurysms by a Bioinformatics Analysis.
    Lin Y; Ma HY; Wang Y; He J; Liu HJ
    Front Genet; 2022; 13():875007. PubMed ID: 35432454
    [No Abstract]   [Full Text] [Related]  

  • 16.
    Xu DD; Liu XQ; Wu ZS
    J Integr Neurosci; 2024 Mar; 23(3):55. PubMed ID: 38538213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA Sequencing Data from Human Intracranial Aneurysm Tissue Reveals a Complex Inflammatory Environment Associated with Rupture.
    Tutino VM; Zebraski HR; Rajabzadeh-Oghaz H; Chaves L; Dmytriw AA; Siddiqui AH; Kolega J; Poppenberg KE
    Mol Diagn Ther; 2021 Nov; 25(6):775-790. PubMed ID: 34403136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomics analysis of differentially expressed proteins in ruptured and unruptured cerebral aneurysms by iTRAQ.
    Jiang P; Wu J; Chen X; Ning B; Liu Q; Li Z; Li M; Yang F; Cao Y; Wang R; Wang S
    J Proteomics; 2018 Jun; 182():45-52. PubMed ID: 29729990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated analysis of microarray data to identify the genes critical for the rupture of intracranial aneurysm.
    Wei L; Wang Q; Zhang Y; Yang C; Guan H; Jiang J; Sun Z
    Oncol Lett; 2018 Apr; 15(4):4951-4957. PubMed ID: 29552131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific signature biomarkers highlight the potential mechanisms of circulating neutrophils in aneurysmal subarachnoid hemorrhage.
    Weng W; Cheng F; Zhang J
    Front Pharmacol; 2022; 13():1022564. PubMed ID: 36438795
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.