These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36330784)

  • 21. Realizing the Power of Text Mining and Natural Language Processing for Analyzing Patient Safety Event Narratives: The Challenges and Path Forward.
    Fong A
    J Patient Saf; 2021 Dec; 17(8):e834-e836. PubMed ID: 34852413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Building a tobacco user registry by extracting multiple smoking behaviors from clinical notes.
    Palmer EL; Hassanpour S; Higgins J; Doherty JA; Onega T
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):141. PubMed ID: 31340796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical notes as prognostic markers of mortality associated with diabetes mellitus following critical care: A retrospective cohort analysis using machine learning and unstructured big data.
    De Silva K; Mathews N; Teede H; Forbes A; Jönsson D; Demmer RT; Enticott J
    Comput Biol Med; 2021 May; 132():104305. PubMed ID: 33705995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques.
    Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A
    Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation.
    Zhao Y; Fu S; Bielinski SJ; Decker PA; Chamberlain AM; Roger VL; Liu H; Larson NB
    J Med Internet Res; 2021 Mar; 23(3):e22951. PubMed ID: 33683212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients.
    Sharma B; Dligach D; Swope K; Salisbury-Afshar E; Karnik NS; Joyce C; Afshar M
    BMC Med Inform Decis Mak; 2020 Apr; 20(1):79. PubMed ID: 32349766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated Identification of Clinical Procedures in Free-Text Electronic Clinical Records with a Low-Code Named Entity Recognition Workflow.
    Macri C; Teoh I; Bacchi S; Sun M; Selva D; Casson R; Chan W
    Methods Inf Med; 2022 Sep; 61(3-04):84-89. PubMed ID: 36096143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MADEx: A System for Detecting Medications, Adverse Drug Events, and Their Relations from Clinical Notes.
    Yang X; Bian J; Gong Y; Hogan WR; Wu Y
    Drug Saf; 2019 Jan; 42(1):123-133. PubMed ID: 30600484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using weak supervision and deep learning to classify clinical notes for identification of current suicidal ideation.
    Cusick M; Adekkanattu P; Campion TR; Sholle ET; Myers A; Banerjee S; Alexopoulos G; Wang Y; Pathak J
    J Psychiatr Res; 2021 Apr; 136():95-102. PubMed ID: 33581461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screening Electronic Health Record-Related Patient Safety Reports Using Machine Learning.
    Marella WM; Sparnon E; Finley E
    J Patient Saf; 2017 Mar; 13(1):31-36. PubMed ID: 24721977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring the Value of a Practical Text Mining Approach to Identify Patients With Housing Issues in the Free-Text Notes in Electronic Health Record: Findings of a Retrospective Cohort Study.
    Hatef E; Singh Deol G; Rouhizadeh M; Li A; Eibensteiner K; Monsen CB; Bratslaver R; Senese M; Kharrazi H
    Front Public Health; 2021; 9():697501. PubMed ID: 34513783
    [No Abstract]   [Full Text] [Related]  

  • 34. Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation.
    Afshar M; Phillips A; Karnik N; Mueller J; To D; Gonzalez R; Price R; Cooper R; Joyce C; Dligach D
    J Am Med Inform Assoc; 2019 Mar; 26(3):254-261. PubMed ID: 30602031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models.
    Levis M; Leonard Westgate C; Gui J; Watts BV; Shiner B
    Psychol Med; 2021 Jun; 51(8):1382-1391. PubMed ID: 32063248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using natural language processing and machine learning to identify gout flares from electronic clinical notes.
    Zheng C; Rashid N; Wu YL; Koblick R; Lin AT; Levy GD; Cheetham TC
    Arthritis Care Res (Hoboken); 2014 Nov; 66(11):1740-8. PubMed ID: 24664671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting the presence of an indwelling urinary catheter and urinary symptoms in hospitalized patients using natural language processing.
    Gundlapalli AV; Divita G; Redd A; Carter ME; Ko D; Rubin M; Samore M; Strymish J; Krein S; Gupta K; Sales A; Trautner BW
    J Biomed Inform; 2017 Jul; 71S():S39-S45. PubMed ID: 27404849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review.
    Sheikhalishahi S; Miotto R; Dudley JT; Lavelli A; Rinaldi F; Osmani V
    JMIR Med Inform; 2019 Apr; 7(2):e12239. PubMed ID: 31066697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extraction of Temporal Structures for Clinical Events in Unlabeled Free-Text Electronic Health Records in Russian.
    Funkner AA; Zhurman DA; Kovalchuk SV
    Stud Health Technol Inform; 2021 Nov; 287():55-56. PubMed ID: 34795079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.