These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 36330784)
41. A method for rapid machine learning development for data mining with doctor-in-the-loop. Bull NJ; Honan B; Spratt NJ; Quilty S PLoS One; 2023; 18(5):e0284965. PubMed ID: 37163511 [TBL] [Abstract][Full Text] [Related]
42. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing. Garg R; Oh E; Naidech A; Kording K; Prabhakaran S J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549 [TBL] [Abstract][Full Text] [Related]
43. Assessing stroke severity using electronic health record data: a machine learning approach. Kogan E; Twyman K; Heap J; Milentijevic D; Lin JH; Alberts M BMC Med Inform Decis Mak; 2020 Jan; 20(1):8. PubMed ID: 31914991 [TBL] [Abstract][Full Text] [Related]
44. Automated Learning of Temporal Expressions. Redd D; Shaoa Y; Yang J; Divita G; Zeng-Treitler Q Stud Health Technol Inform; 2015; 216():639-42. PubMed ID: 26262129 [TBL] [Abstract][Full Text] [Related]
45. Prospective validation of a machine learning model that uses provider notes to identify candidates for resective epilepsy surgery. Wissel BD; Greiner HM; Glauser TA; Holland-Bouley KD; Mangano FT; Santel D; Faist R; Zhang N; Pestian JP; Szczesniak RD; Dexheimer JW Epilepsia; 2020 Jan; 61(1):39-48. PubMed ID: 31784992 [TBL] [Abstract][Full Text] [Related]
46. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome. Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411 [TBL] [Abstract][Full Text] [Related]
47. A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis. Young IJB; Luz S; Lone N Int J Med Inform; 2019 Dec; 132():103971. PubMed ID: 31630063 [TBL] [Abstract][Full Text] [Related]
48. Natural Language Processing for Detecting Medication-Related Notes in Heart Failure Telehealth Patients. Eggerth A; Kreiner K; Hayn D; Pfeifer B; Pölzl G; Egelseer-Bründl T; Schreier G Stud Health Technol Inform; 2020 Jun; 270():761-765. PubMed ID: 32570485 [TBL] [Abstract][Full Text] [Related]
49. MedEx: a medication information extraction system for clinical narratives. Xu H; Stenner SP; Doan S; Johnson KB; Waitman LR; Denny JC J Am Med Inform Assoc; 2010; 17(1):19-24. PubMed ID: 20064797 [TBL] [Abstract][Full Text] [Related]
50. Data from clinical notes: a perspective on the tension between structure and flexible documentation. Rosenbloom ST; Denny JC; Xu H; Lorenzi N; Stead WW; Johnson KB J Am Med Inform Assoc; 2011; 18(2):181-6. PubMed ID: 21233086 [TBL] [Abstract][Full Text] [Related]
51. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity. Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662 [TBL] [Abstract][Full Text] [Related]
52. Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges. Wong A; Plasek JM; Montecalvo SP; Zhou L Pharmacotherapy; 2018 Aug; 38(8):822-841. PubMed ID: 29884988 [TBL] [Abstract][Full Text] [Related]
53. Automated identification of wound information in clinical notes of patients with heart diseases: Developing and validating a natural language processing application. Topaz M; Lai K; Dowding D; Lei VJ; Zisberg A; Bowles KH; Zhou L Int J Nurs Stud; 2016 Dec; 64():25-31. PubMed ID: 27668855 [TBL] [Abstract][Full Text] [Related]
55. Using machine learning to predict subsequent events after EMS non-conveyance decisions. Paulin J; Reunamo A; Kurola J; Moen H; Salanterä S; Riihimäki H; Vesanen T; Koivisto M; Iirola T BMC Med Inform Decis Mak; 2022 Jun; 22(1):166. PubMed ID: 35739501 [TBL] [Abstract][Full Text] [Related]
56. Generating real-world evidence from unstructured clinical notes to examine clinical utility of genetic tests: use case in BRCAness. Zhao Y; Weroha SJ; Goode EL; Liu H; Wang C BMC Med Inform Decis Mak; 2021 Jan; 21(1):3. PubMed ID: 33407429 [TBL] [Abstract][Full Text] [Related]
57. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing. Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754 [TBL] [Abstract][Full Text] [Related]
58. Machine learning and natural language processing to identify falls in electronic patient care records from ambulance attendances. Tohira H; Finn J; Ball S; Brink D; Buzzacott P Inform Health Soc Care; 2022 Oct; 47(4):403-413. PubMed ID: 34965817 [TBL] [Abstract][Full Text] [Related]
59. An automated knowledge-based textual summarization system for longitudinal, multivariate clinical data. Goldstein A; Shahar Y J Biomed Inform; 2016 Jun; 61():159-75. PubMed ID: 27039119 [TBL] [Abstract][Full Text] [Related]
60. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies. Afshar M; Dligach D; Sharma B; Cai X; Boyda J; Birch S; Valdez D; Zelisko S; Joyce C; Modave F; Price R J Am Med Inform Assoc; 2019 Nov; 26(11):1364-1369. PubMed ID: 31145455 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]