These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 36330784)
61. Using natural language processing to identify problem usage of prescription opioids. Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569 [TBL] [Abstract][Full Text] [Related]
62. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics. Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274 [TBL] [Abstract][Full Text] [Related]
63. Mining clinical phrases from nursing notes to discover risk factors of patient deterioration. Korach ZT; Yang J; Rossetti SC; Cato KD; Kang MJ; Knaplund C; Schnock KO; Garcia JP; Jia H; Schwartz JM; Zhou L Int J Med Inform; 2020 Mar; 135():104053. PubMed ID: 31884312 [TBL] [Abstract][Full Text] [Related]
64. Diagnosing post-traumatic stress disorder using electronic medical record data. Zafari H; Kosowan L; Zulkernine F; Signer A Health Informatics J; 2021; 27(4):14604582211053259. PubMed ID: 34818936 [TBL] [Abstract][Full Text] [Related]
65. A study of the transferability of influenza case detection systems between two large healthcare systems. Ye Y; Wagner MM; Cooper GF; Ferraro JP; Su H; Gesteland PH; Haug PJ; Millett NE; Aronis JM; Nowalk AJ; Ruiz VM; López Pineda A; Shi L; Van Bree R; Ginter T; Tsui F PLoS One; 2017; 12(4):e0174970. PubMed ID: 28380048 [TBL] [Abstract][Full Text] [Related]
66. A method for systematic discovery of adverse drug events from clinical notes. Wang G; Jung K; Winnenburg R; Shah NH J Am Med Inform Assoc; 2015 Nov; 22(6):1196-204. PubMed ID: 26232442 [TBL] [Abstract][Full Text] [Related]
67. Extracting Alcohol and Substance Abuse Status from Clinical Notes: The Added Value of Nursing Data. Topaz M; Murga L; Bar-Bachar O; Cato K; Collins S Stud Health Technol Inform; 2019 Aug; 264():1056-1060. PubMed ID: 31438086 [TBL] [Abstract][Full Text] [Related]
68. The Food and Drug Administration Biologics Effectiveness and Safety Initiative Facilitates Detection of Vaccine Administrations From Unstructured Data in Medical Records Through Natural Language Processing. Deady M; Ezzeldin H; Cook K; Billings D; Pizarro J; Plotogea AA; Saunders-Hastings P; Belov A; Whitaker BI; Anderson SA Front Digit Health; 2021; 3():777905. PubMed ID: 35005697 [No Abstract] [Full Text] [Related]
69. Natural language processing for prediction of readmission in posterior lumbar fusion patients: which free-text notes have the most utility? Karhade AV; Lavoie-Gagne O; Agaronnik N; Ghaednia H; Collins AK; Shin D; Schwab JH Spine J; 2022 Feb; 22(2):272-277. PubMed ID: 34407468 [TBL] [Abstract][Full Text] [Related]
70. Automated problem list generation and physicians perspective from a pilot study. Devarakonda MV; Mehta N; Tsou CH; Liang JJ; Nowacki AS; Jelovsek JE Int J Med Inform; 2017 Sep; 105():121-129. PubMed ID: 28750905 [TBL] [Abstract][Full Text] [Related]
71. Facilitating clinical research through automation: Combining optical character recognition with natural language processing. Hom J; Nikowitz J; Ottesen R; Niland JC Clin Trials; 2022 Oct; 19(5):504-511. PubMed ID: 35608136 [TBL] [Abstract][Full Text] [Related]
72. Negation Detection for Clinical Text Mining in Russian. Funkner A; Balabaeva K; Kovalchuk S Stud Health Technol Inform; 2020 Jun; 270():342-346. PubMed ID: 32570403 [TBL] [Abstract][Full Text] [Related]
73. Machine learning to parse breast pathology reports in Chinese. Tang R; Ouyang L; Li C; He Y; Griffin M; Taghian A; Smith B; Yala A; Barzilay R; Hughes K Breast Cancer Res Treat; 2018 Jun; 169(2):243-250. PubMed ID: 29380208 [TBL] [Abstract][Full Text] [Related]
74. Using natural language processing to classify social work interventions. Bako AT; Taylor HL; Wiley K; Zheng J; Walter-McCabe H; Kasthurirathne SN; Vest JR Am J Manag Care; 2021 Jan; 27(1):e24-e31. PubMed ID: 33471465 [TBL] [Abstract][Full Text] [Related]
75. Using Machine Learning to Capture Quality Metrics from Natural Language: A Case Study of Diabetic Eye Exams. Fong A; Scoulios N; Blumenthal HJ; Anderson RE Methods Inf Med; 2021 Sep; 60(3-04):110-115. PubMed ID: 34598298 [TBL] [Abstract][Full Text] [Related]
76. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery. Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557 [TBL] [Abstract][Full Text] [Related]
77. Automated misspelling detection and correction in clinical free-text records. Lai KH; Topaz M; Goss FR; Zhou L J Biomed Inform; 2015 Jun; 55():188-95. PubMed ID: 25917057 [TBL] [Abstract][Full Text] [Related]
78. "Note Bloat" impacts deep learning-based NLP models for clinical prediction tasks. Liu J; Capurro D; Nguyen A; Verspoor K J Biomed Inform; 2022 Sep; 133():104149. PubMed ID: 35878821 [TBL] [Abstract][Full Text] [Related]
79. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related]
80. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. Le DV; Montgomery J; Kirkby KC; Scanlan J J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]