These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36330958)

  • 21. Insulin-like peptides (AmILP1 and AmILP2) differentially affect female caste development in the honey bee (Apis mellifera L.).
    Wang Y; Azevedo SV; Hartfelder K; Amdam GV
    J Exp Biol; 2013 Dec; 216(Pt 23):4347-57. PubMed ID: 23997199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Putative Drone Copulation Factors Regulating Honey Bee (
    Brutscher LM; Baer B; Niño EL
    Insects; 2019 Jan; 10(1):. PubMed ID: 30626022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sex- and caste-specific transcriptomes of larval honey bee (Apis mellifera L.) gonads: DMRT A2 and Hsp83 are differentially expressed and regulated by juvenile hormone.
    Lago DC; Hasselmann M; Hartfelder K
    Insect Mol Biol; 2022 Oct; 31(5):593-608. PubMed ID: 35524973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of ATAC-seq in wheat seedling roots using INTACT-isolated nuclei.
    Debernardi JM; Burguener G; Bubb K; Liu Q; Queitsch C; Dubcovsky J
    BMC Plant Biol; 2023 May; 23(1):270. PubMed ID: 37211599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) Queen and Worker Larvae: a deep insight into caste pathway decisions.
    Begna D; Han B; Feng M; Fang Y; Li J
    J Proteome Res; 2012 Feb; 11(2):1317-29. PubMed ID: 22200504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.
    Li Z; Huang ZY; Sharma DB; Xue Y; Wang Z; Ren B
    PLoS One; 2016; 11(2):e0148740. PubMed ID: 26882104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reproductive plasticity and oogenesis in the queen honey bee (Apis mellifera).
    Aamidor SE; Cardoso-Júnior CAM; Harianto J; Nowell CJ; Cole L; Oldroyd BP; Ronai I
    J Insect Physiol; 2022 Jan; 136():104347. PubMed ID: 34902433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera).
    Shi YY; Yan WY; Huang ZY; Wang ZL; Wu XB; Zeng ZJ
    Naturwissenschaften; 2013 Feb; 100(2):193-7. PubMed ID: 23238637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATAC-pipe: general analysis of genome-wide chromatin accessibility.
    Zuo Z; Jin Y; Zhang W; Lu Y; Li B; Qu K
    Brief Bioinform; 2019 Sep; 20(5):1934-1943. PubMed ID: 29982337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.
    He XJ; Jiang WJ; Zhou M; Barron AB; Zeng ZJ
    Insect Sci; 2019 Jun; 26(3):499-509. PubMed ID: 29110379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera.
    Wheeler DE; Buck N; Evans JD
    Insect Mol Biol; 2006 Oct; 15(5):597-602. PubMed ID: 17069635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing].
    Wu J; Quan JP; Ye Y; Wu ZF; Yang J; Yang M; Zheng EQ
    Yi Chuan; 2020 Apr; 42(4):333-346. PubMed ID: 32312702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Analysis of Brain and Fat Body Gene Splicing Patterns in the Honey Bee,
    Kannan K; Shook M; Li Y; Robinson GE; Ma J
    G3 (Bethesda); 2019 Apr; 9(4):1055-1063. PubMed ID: 30792192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulatory chromatin landscape in
    Tannenbaum M; Sarusi-Portuguez A; Krispil R; Schwartz M; Loza O; Benichou JIC; Mosquna A; Hakim O
    Plant Methods; 2018; 14():113. PubMed ID: 30598689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior.
    Iino S; Oya S; Kakutani T; Kohno H; Kubo T
    Sci Rep; 2023 Jun; 13(1):10491. PubMed ID: 37380789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA-sequencing elucidates the regulation of behavioural transitions associated with the mating process in honey bee queens.
    Manfredini F; Brown MJ; Vergoz V; Oldroyd BP
    BMC Genomics; 2015 Jul; 16():563. PubMed ID: 26227994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain.
    Herb BR; Shook MS; Fields CJ; Robinson GE
    BMC Genomics; 2018 Mar; 19(1):216. PubMed ID: 29580210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees.
    Shpigler HY; Saul MC; Murdoch EE; Cash-Ahmed AC; Seward CH; Sloofman L; Chandrasekaran S; Sinha S; Stubbs LJ; Robinson GE
    Genes Brain Behav; 2017 Jul; 16(6):579-591. PubMed ID: 28328153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating chromatin accessibility during development and differentiation by ATAC-sequencing to guide the identification of cis-regulatory elements.
    Louise Smith E; Mok GF; Münsterberg A
    Biochem Soc Trans; 2022 Jun; 50(3):1167-1177. PubMed ID: 35604124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correction to 'Chromatin accessibility-based characterisation of brain gene regulatory networks in three distinct honey bee polyphenisms'.
    Nucleic Acids Res; 2023 Nov; 51(20):11409-11410. PubMed ID: 37811891
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.