These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36330969)

  • 21. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.
    Koller M; Maršálek L; de Sousa Dias MM; Braunegg G
    N Biotechnol; 2017 Jul; 37(Pt A):24-38. PubMed ID: 27184617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation.
    Israni N; Venkatachalam P; Gajaraj B; Varalakshmi KN; Shivakumar S
    J Environ Manage; 2020 Feb; 255():109884. PubMed ID: 32063322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of Polyhydroxyalkanoates (PHAs) by the Valorization of Biomass and Synthetic Waste.
    Javaid H; Nawaz A; Riaz N; Mukhtar H; -Ul-Haq I; Shah KA; Khan H; Naqvi SM; Shakoor S; Rasool A; Ullah K; Manzoor R; Kaleem I; Murtaza G
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The green revolution of food waste upcycling to produce polyhydroxyalkanoates.
    Bhatia SK; Patel AK; Yang YH
    Trends Biotechnol; 2024 Apr; ():. PubMed ID: 38582658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs.
    Tran MH; Choi TR; Yang YH; Lee OK; Lee EY
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128687. PubMed ID: 38101655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials.
    Jayasekara S; Dissanayake L; Jayakody LN
    Int J Food Microbiol; 2022 Sep; 377():109785. PubMed ID: 35752069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review on recovery of proteins from industrial wastewaters with special emphasis on PHA production process: Sustainable circular bioeconomy process development.
    Yadav B; Chavan S; Atmakuri A; Tyagi RD; Drogui P
    Bioresour Technol; 2020 Dec; 317():124006. PubMed ID: 32889176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey.
    Asunis F; De Gioannis G; Francini G; Lombardi L; Muntoni A; Polettini A; Pomi R; Rossi A; Spiga D
    Waste Manag; 2021 Aug; 132():31-43. PubMed ID: 34304020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review.
    Liu H; Kumar V; Jia L; Sarsaiya S; Kumar D; Juneja A; Zhang Z; Sindhu R; Binod P; Bhatia SK; Awasthi MK
    Chemosphere; 2021 Dec; 284():131427. PubMed ID: 34323796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable applications of polyhydroxyalkanoates in various fields: A critical review.
    Pandey A; Adama N; Adjallé K; Blais JF
    Int J Biol Macromol; 2022 Nov; 221():1184-1201. PubMed ID: 36113591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RSM-GA Based Optimization of Bacterial PHA Production and
    Rao A; Haque S; El-Enshasy HA; Singh V; Mishra BN
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31842491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges of scaling-up PHA production from waste streams. A review.
    Rodriguez-Perez S; Serrano A; Pantión AA; Alonso-Fariñas B
    J Environ Manage; 2018 Jan; 205():215-230. PubMed ID: 28987985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis.
    Mitra R; Xu T; Chen GQ; Xiang H; Han J
    Microb Biotechnol; 2022 May; 15(5):1446-1470. PubMed ID: 34473895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: A review.
    Awasthi MK; Kumar V; Yadav V; Sarsaiya S; Awasthi SK; Sindhu R; Binod P; Kumar V; Pandey A; Zhang Z
    Chemosphere; 2022 Mar; 290():133310. PubMed ID: 34919909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomedical applications of environmental friendly poly-hydroxyalkanoates.
    Ansari S; Sami N; Yasin D; Ahmad N; Fatma T
    Int J Biol Macromol; 2021 Jul; 183():549-563. PubMed ID: 33932421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The sustainability of microbial bioplastics, production and applications.
    El-Malek FA; Khairy H; Farag A; Omar S
    Int J Biol Macromol; 2020 Aug; 157():319-328. PubMed ID: 32315677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society.
    Pérez V; Mota CR; Muñoz R; Lebrero R
    Chemosphere; 2020 Sep; 255():126929. PubMed ID: 32402877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of polyhydroxyalkanoates using dairy processing waste - A review.
    Dutt Tripathi A; Paul V; Agarwal A; Sharma R; Hashempour-Baltork F; Rashidi L; Khosravi Darani K
    Bioresour Technol; 2021 Apr; 326():124735. PubMed ID: 33508643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green alternatives to petroleum-based plastics: production of bioplastic from Pseudomonas neustonica strain NGB15 using waste carbon source.
    Baltacı NG; Baltacı MÖ; Görmez A; Örtücü S
    Environ Sci Pollut Res Int; 2024 May; 31(21):31149-31158. PubMed ID: 38625463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.