These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36331274)

  • 1. Comparing the Rise in Glucose Concentration in Blood, Aqueous and Interstitial Fluid During a Glucose Tolerance Test.
    Chan TIL; Yip YWY; Man TTC; Pang CP; Brelén ME
    Transl Vis Sci Technol; 2022 Nov; 11(11):3. PubMed ID: 36331274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor.
    Cameron BD; Baba JS; Coté GL
    Diabetes Technol Ther; 2001; 3(2):201-7. PubMed ID: 11478325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Much Accuracy of Interstitial Glucose Measurement Is Enough? Is There a Need for New Evidence?
    Hermanns N; Ehrmann D; Kulzer B
    J Diabetes Sci Technol; 2017 Mar; 11(2):296-298. PubMed ID: 28264185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive polarimetric-based glucose monitoring: an in vivo study.
    Purvinis G; Cameron BD; Altrogge DM
    J Diabetes Sci Technol; 2011 Mar; 5(2):380-7. PubMed ID: 21527109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Evidence of Acetaminophen Interference with Subcutaneous Glucose Sensing in Humans: A Pilot Study.
    Basu A; Veettil S; Dyer R; Peyser T; Basu R
    Diabetes Technol Ther; 2016 Feb; 18 Suppl 2(Suppl 2):S243-7. PubMed ID: 26784129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing the impact of time lag variability on accuracy evaluation of continuous glucose monitoring systems.
    Scuffi C; Lucarelli F; Valgimigli F
    J Diabetes Sci Technol; 2012 Nov; 6(6):1383-91. PubMed ID: 23294784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of an intrinsic lag of continuous glucose monitoring systems to differences in measured and actual glucose concentrations changing at variable rates in vitro.
    Davey RJ; Low C; Jones TW; Fournier PA
    J Diabetes Sci Technol; 2010 Nov; 4(6):1393-9. PubMed ID: 21129335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes.
    Basu A; Dube S; Veettil S; Slama M; Kudva YC; Peyser T; Carter RE; Cobelli C; Basu R
    J Diabetes Sci Technol; 2015 Jan; 9(1):63-8. PubMed ID: 25305282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Interstitial Fluid Glucose Levels Obtained by Continuous Glucose Monitoring and Flash Glucose Monitoring in Patients With Type 2 Diabetes Mellitus Undergoing Hemodialysis.
    Yajima T; Takahashi H; Yasuda K
    J Diabetes Sci Technol; 2020 Nov; 14(6):1088-1094. PubMed ID: 31625413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncontact Optical Measurement of Aqueous Humor Glucose Levels and Correlation with Serum Glucose Levels in Rabbit.
    Hwang YS; Kang EY; Shen CR; Hong WH; Wu WC
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocular pharmacokinetics in rabbits using a novel dual probe microdialysis technique.
    Macha S; Mitra AK
    Exp Eye Res; 2001 Mar; 72(3):289-99. PubMed ID: 11180978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for near-continuous determination of aqueous humor flow; effects of anaesthetics, temperature and indomethacin.
    Sperber GO; Bill A
    Exp Eye Res; 1984 Oct; 39(4):435-53. PubMed ID: 6389166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing by deconvolution plasma glucose from continuous glucose monitoring sensor data.
    Facchinetti A; Sparacino G; Zanderigo F; Cobelli C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():55-8. PubMed ID: 17946377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptibility of interstitial continuous glucose monitor performance to sleeping position.
    Mensh BD; Wisniewski NA; Neil BM; Burnett DR
    J Diabetes Sci Technol; 2013 Jul; 7(4):863-70. PubMed ID: 23911167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of venous, capillary and interstitial blood glucose data measured during hyperbaric oxygen treatment from patients with diabetes mellitus.
    Baines C; Vicendese D; Cooper D; McGuiness W; Miller C
    Diving Hyperb Med; 2021 Sep; 51(3):240-247. PubMed ID: 34547774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is the response of continuous glucose monitors to physiological changes in blood glucose levels affected by sensor life?
    Iscoe KE; Davey RJ; Fournier PA
    Diabetes Technol Ther; 2012 Feb; 14(2):135-42. PubMed ID: 22149627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrotic Encapsulation Is the Dominant Source of Continuous Glucose Monitor Delays.
    McClatchey PM; McClain ES; Williams IM; Malabanan CM; James FD; Lord PC; Gregory JM; Cliffel DE; Wasserman DH
    Diabetes; 2019 Oct; 68(10):1892-1901. PubMed ID: 31399432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time Delay of CGM Sensors: Relevance, Causes, and Countermeasures.
    Schmelzeisen-Redeker G; Schoemaker M; Kirchsteiger H; Freckmann G; Heinemann L; Del Re L
    J Diabetes Sci Technol; 2015 Aug; 9(5):1006-15. PubMed ID: 26243773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tale of two compartments: interstitial versus blood glucose monitoring.
    Cengiz E; Tamborlane WV
    Diabetes Technol Ther; 2009 Jun; 11 Suppl 1(Suppl 1):S11-6. PubMed ID: 19469670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes.
    Shi T; Li D; Li G; Zhang Y; Xu K; Lu L
    J Diabetes Res; 2016; 2016():4596316. PubMed ID: 27239479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.