These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36331289)
1. Improving Methods of Identifying Anaphylaxis for Medical Product Safety Surveillance Using Natural Language Processing and Machine Learning. Carrell DS; Gruber S; Floyd JS; Bann MA; Cushing-Haugen KL; Johnson RL; Graham V; Cronkite DJ; Hazlehurst BL; Felcher AH; Bejan CA; Kennedy A; Shinde MU; Karami S; Ma Y; Stojanovic D; Zhao Y; Ball R; Nelson JC Am J Epidemiol; 2023 Feb; 192(2):283-295. PubMed ID: 36331289 [TBL] [Abstract][Full Text] [Related]
2. The use of natural language processing to identify vaccine-related anaphylaxis at five health care systems in the Vaccine Safety Datalink. Yu W; Zheng C; Xie F; Chen W; Mercado C; Sy LS; Qian L; Glenn S; Tseng HF; Lee G; Duffy J; McNeil MM; Daley MF; Crane B; McLean HQ; Jackson LA; Jacobsen SJ Pharmacoepidemiol Drug Saf; 2020 Feb; 29(2):182-188. PubMed ID: 31797475 [TBL] [Abstract][Full Text] [Related]
3. Identification and Validation of Anaphylaxis Using Electronic Health Data in a Population-based Setting. Bann MA; Carrell DS; Gruber S; Shinde M; Ball R; Nelson JC; Floyd JS Epidemiology; 2021 May; 32(3):439-443. PubMed ID: 33591057 [TBL] [Abstract][Full Text] [Related]
4. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data. Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310 [TBL] [Abstract][Full Text] [Related]
5. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of a predictive model algorithm to identify anaphylaxis in adults with type 2 diabetes in U.S. administrative claims data. Beachler DC; Taylor DH; Anthony MS; Yin R; Li L; Saltus CW; Li L; Shaunik A; Walsh KE; Rothman KJ; Johannes CB; Aroda VR; Carr W; Goldberg P; Accardi A; O'Shura JS; Sharma K; Juhaeri J; Lanes S; Wu C Pharmacoepidemiol Drug Saf; 2021 Jul; 30(7):918-926. PubMed ID: 33899314 [TBL] [Abstract][Full Text] [Related]
7. Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms. Jorge A; Castro VM; Barnado A; Gainer V; Hong C; Cai T; Cai T; Carroll R; Denny JC; Crofford L; Costenbader KH; Liao KP; Karlson EW; Feldman CH Semin Arthritis Rheum; 2019 Aug; 49(1):84-90. PubMed ID: 30665626 [TBL] [Abstract][Full Text] [Related]
8. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients. Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867 [TBL] [Abstract][Full Text] [Related]
9. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery. Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557 [TBL] [Abstract][Full Text] [Related]
10. Electronic phenotyping of health outcomes of interest using a linked claims-electronic health record database: Findings from a machine learning pilot project. Gibson TB; Nguyen MD; Burrell T; Yoon F; Wong J; Dharmarajan S; Ouellet-Hellstrom R; Hua W; Ma Y; Baro E; Bloemers S; Pack C; Kennedy A; Toh S; Ball R J Am Med Inform Assoc; 2021 Jul; 28(7):1507-1517. PubMed ID: 33712852 [TBL] [Abstract][Full Text] [Related]
11. Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation. Zhao Y; Fu S; Bielinski SJ; Decker PA; Chamberlain AM; Roger VL; Liu H; Larson NB J Med Internet Res; 2021 Mar; 23(3):e22951. PubMed ID: 33683212 [TBL] [Abstract][Full Text] [Related]
12. Finding warning markers: Leveraging natural language processing and machine learning technologies to detect risk of school violence. Ni Y; Barzman D; Bachtel A; Griffey M; Osborn A; Sorter M Int J Med Inform; 2020 Jul; 139():104137. PubMed ID: 32361146 [TBL] [Abstract][Full Text] [Related]
13. Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing. MacPhaul E; Zhou L; Mooney SJ; Azrael D; Bowen A; Rowhani-Rahbar A; Yenduri R; Barber C; Goralnick E; Miller M JAMA Netw Open; 2023 Apr; 6(4):e235870. PubMed ID: 37022685 [TBL] [Abstract][Full Text] [Related]
14. Improving the accuracy of automated gout flare ascertainment using natural language processing of electronic health records and linked Medicare claims data. Yoshida K; Cai T; Bessette LG; Kim E; Lee SB; Zabotka LE; Sun A; Mastrorilli JM; Oduol TA; Liu J; Solomon DH; Kim SC; Desai RJ; Liao KP Pharmacoepidemiol Drug Saf; 2024 Jan; 33(1):e5684. PubMed ID: 37654015 [TBL] [Abstract][Full Text] [Related]
15. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related]
16. A comparison of rule-based and machine learning approaches for classifying patient portal messages. Cronin RM; Fabbri D; Denny JC; Rosenbloom ST; Jackson GP Int J Med Inform; 2017 Sep; 105():110-120. PubMed ID: 28750904 [TBL] [Abstract][Full Text] [Related]
17. External validation of a machine learning classifier to identify unhealthy alcohol use in hospitalized patients. Lin Y; Sharma B; Thompson HM; Boley R; Perticone K; Chhabra N; Afshar M; Karnik NS Addiction; 2022 Apr; 117(4):925-933. PubMed ID: 34729829 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a Natural Language Processing Approach to Identify Diagnostic Errors and Analysis of Safety Learning System Case Review Data: Retrospective Cohort Study. Tabaie A; Tran A; Calabria T; Bennett SS; Milicia A; Weintraub W; Gallagher WJ; Yosaitis J; Schubel LC; Hill MA; Smith KM; Miller K J Med Internet Res; 2024 Aug; 26():e50935. PubMed ID: 39186764 [TBL] [Abstract][Full Text] [Related]
19. Learning to detect and understand drug discontinuation events from clinical narratives. Liu F; Pradhan R; Druhl E; Freund E; Liu W; Sauer BC; Cunningham F; Gordon AJ; Peters CB; Yu H J Am Med Inform Assoc; 2019 Oct; 26(10):943-951. PubMed ID: 31034028 [TBL] [Abstract][Full Text] [Related]
20. Identification of Patients With Metastatic Prostate Cancer With Natural Language Processing and Machine Learning. Yang R; Zhu D; Howard LE; De Hoedt A; Williams SB; Freedland SJ; Klaassen Z JCO Clin Cancer Inform; 2022 Oct; 6():e2100071. PubMed ID: 36215673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]