These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 36331872)

  • 21. Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning.
    Franklin NT; Frank MJ
    PLoS Comput Biol; 2020 Apr; 16(4):e1007720. PubMed ID: 32282795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric and adaptive reward coding via normalized reinforcement learning.
    Louie K
    PLoS Comput Biol; 2022 Jul; 18(7):e1010350. PubMed ID: 35862443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Momentary subjective well-being depends on learning and not reward.
    Blain B; Rutledge RB
    Elife; 2020 Nov; 9():. PubMed ID: 33200989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
    Khamassi M; Enel P; Dominey PF; Procyk E
    Prog Brain Res; 2013; 202():441-64. PubMed ID: 23317844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 5-HT 2A and 5-HT 2C receptor antagonism differentially modulate reinforcement learning and cognitive flexibility: behavioural and computational evidence.
    Hervig ME; Zühlsdorff K; Olesen SF; Phillips B; Božič T; Dalley JW; Cardinal RN; Alsiö J; Robbins TW
    Psychopharmacology (Berl); 2024 Aug; 241(8):1631-1644. PubMed ID: 38594515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approach-avoidance reinforcement learning as a translational and computational model of anxiety-related avoidance.
    Yamamori Y; Robinson OJ; Roiser JP
    Elife; 2023 Nov; 12():. PubMed ID: 37963085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational evidence for hierarchically structured reinforcement learning in humans.
    Eckstein MK; Collins AGE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection history in context: Evidence for the role of reinforcement learning in biasing attention.
    Anderson BA; Britton MK
    Atten Percept Psychophys; 2019 Nov; 81(8):2666-2672. PubMed ID: 31309530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depressive symptoms are associated with blunted reward learning in social contexts.
    Safra L; Chevallier C; Palminteri S
    PLoS Comput Biol; 2019 Jul; 15(7):e1007224. PubMed ID: 31356594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Testing models of context-dependent outcome encoding in reinforcement learning.
    Hayes WM; Wedell DH
    Cognition; 2023 Jan; 230():105280. PubMed ID: 36099856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Liu J; Zhao H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The functional form of value normalization in human reinforcement learning.
    Bavard S; Palminteri S
    Elife; 2023 Jul; 12():. PubMed ID: 37428155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Confirmatory reinforcement learning changes with age during adolescence.
    Chierchia G; Soukupová M; Kilford EJ; Griffin C; Leung J; Palminteri S; Blakemore SJ
    Dev Sci; 2023 May; 26(3):e13330. PubMed ID: 36194156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Meta-reinforcement learning via orbitofrontal cortex.
    Hattori R; Hedrick NG; Jain A; Chen S; You H; Hattori M; Choi JH; Lim BK; Yasuda R; Komiyama T
    Nat Neurosci; 2023 Dec; 26(12):2182-2191. PubMed ID: 37957318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive coordination of working-memory and reinforcement learning in non-human primates performing a trial-and-error problem solving task.
    Viejo G; Girard B; Procyk E; Khamassi M
    Behav Brain Res; 2018 Dec; 355():76-89. PubMed ID: 29061387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reinforcement learning for closed-loop regulation of cardiovascular system with vagus nerve stimulation: a computational study.
    Sarikhani P; Hsu HL; Zeydabadinezhad M; Yao Y; Kothare M; Mahmoudi B
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38718787
    [No Abstract]   [Full Text] [Related]  

  • 39. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.
    Gold JM; Waltz JA; Matveeva TM; Kasanova Z; Strauss GP; Herbener ES; Collins AG; Frank MJ
    Arch Gen Psychiatry; 2012 Feb; 69(2):129-38. PubMed ID: 22310503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.