These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36332258)

  • 1. Thermodynamic Interpretation of the Meyer-Neldel Rule Explains Temperature Dependence of Ion Diffusion in Silicate Glass.
    Takamure N; Sun X; Nagata T; Ho-Baillie A; Fukata N; McKenzie DR
    Phys Rev Lett; 2022 Oct; 129(17):175901. PubMed ID: 36332258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric field and grain size dependence of Meyer-Neldel energy in C(60) films.
    Ullah M; Pivrikas A; Fishchuk II; Kadashchuk A; Stadler P; Simbrunner C; Sariciftci NS; Sitter H
    Synth Met; 2011 Sep; 161(17-18):1987-1990. PubMed ID: 21966084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation diffusion and ionic conductivity in soda-lime silicate glasses.
    Natrup FV; Bracht H; Murugavel S; Roling B
    Phys Chem Chem Phys; 2005 Jun; 7(11):2279-86. PubMed ID: 19785112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropy-reduced Retention Times in Magnetic Memory Elements: A Case of the Meyer-Neldel Compensation Rule.
    Desplat L; Kim JV
    Phys Rev Lett; 2020 Sep; 125(10):107201. PubMed ID: 32955305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hole and Protonic Polarons in Perovskites.
    Braun A; Chen Q; Yelon A
    Chimia (Aarau); 2019 Nov; 73(11):936-942. PubMed ID: 31753075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic Origin of the Vitreous Transition.
    Tournier F R
    Materials (Basel); 2011 May; 4(5):869-892. PubMed ID: 28879955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some New Observations on Activation Energy of Crystal Growth for Thermally Activated Crystallization.
    Mehta N; Kumar A
    J Phys Chem B; 2016 Feb; 120(6):1175-82. PubMed ID: 26800143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural origin of thermal shrinkage in soda-lime silicate glass below the glass transition temperature: A theoretical investigation by microsecond timescale molecular dynamics simulations.
    Shimizu M; Murota T; Urata S; Takato Y; Hamada Y; Koike A; Shimotsuma Y; Fujita K; Miura K
    J Chem Phys; 2021 Jul; 155(4):044501. PubMed ID: 34340397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver structure environments in ion-exchanged silicate glasses studied by X-ray absorption fine structure.
    Yang XC; Li WJ; Dubiel M; Huang WH; Yano T
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1659-62. PubMed ID: 19441594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacancy diffusion in palladium hydrides.
    Polfus JM; Peters T; Bredesen R; Løvvik OM
    Phys Chem Chem Phys; 2021 Jun; 23(24):13680-13686. PubMed ID: 34124732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass: Kohlrausch exponent, fragility, anharmonicity.
    Rault J
    Eur Phys J E Soft Matter; 2012 Apr; 35(4):9703. PubMed ID: 22526977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling Raman, Brillouin and Nd
    Bergler M; Cvecek K; Werr F; Veber A; Schreiner J; Eckstein UR; Webber KG; Schmidt M; de Ligny D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Thermal Charge Relaxation in Poled Silicate Glasses in a Wide Temperature Range (From Liquid Nitrogen to Glass Melting Temperature).
    Raskhodchikov D; Reshetov I; Brunkov P; Kaasik V; Lipovskii A; Tagantsev D
    J Phys Chem B; 2020 Sep; 124(36):7948-7956. PubMed ID: 32790369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barium diffusion in mixed cation glasses.
    Grofmeier M; Natrup FV; Bracht H
    Phys Chem Chem Phys; 2007 Nov; 9(43):5822-7. PubMed ID: 19462578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman microspectroscopy investigation of Ag ion-exchanged glass layers.
    Rahman A; Giarola M; Cattaruzza E; Gonella F; Mardegan M; Trave E; Quaranta A; Mariotto G
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8573-9. PubMed ID: 23421246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Soda Lime Glass Having Antibacterial Property for Industrial Applications.
    Demirel B; Erol Taygun M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface relief hologram formed by selective SiO2 deposition on soda-lime silicate glass.
    Sakai D; Harada K; Shibata H; Kawaguchi K; Nishii J
    PLoS One; 2019; 14(1):e0210340. PubMed ID: 30677070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Spatial Charge in Thermally Poled Glasses via Nanoparticles Formation.
    Babich E; Lubyankina E; Kaasik V; Mozharov A; Mukhin I; Zhurikhina V; Lipovskii A
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-controlled and "diffusionless" crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs.
    Sun Y; Xi H; Ediger MD; Richert R; Yu L
    J Chem Phys; 2009 Aug; 131(7):074506. PubMed ID: 19708750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.