These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36332310)
1. When material science meets microbial ecology: Bacterial community selection on stainless steels in natural seawater. Daille LK; Aguirre J; Anguita J; Galarce C; Caro-Lara L; Armijo F; Vargas IT; Pizarro G; Walczak M; De la Iglesia R Colloids Surf B Biointerfaces; 2023 Jan; 221():112955. PubMed ID: 36332310 [TBL] [Abstract][Full Text] [Related]
2. The impact of alloying element Cu on corrosion and biofilms of 316L stainless steel exposed to seawater. Gao Y; Wu J; Zhang D; Wang P; Wang Y; Zhu L; Li C; Wang W; Zhao J; Yang C; Yang K Environ Sci Pollut Res Int; 2024 Mar; 31(12):18842-18855. PubMed ID: 38351355 [TBL] [Abstract][Full Text] [Related]
3. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater. Acuña N; Ortega-Morales BO; Valadez-González A Mar Biotechnol (NY); 2006; 8(1):62-70. PubMed ID: 16453199 [TBL] [Abstract][Full Text] [Related]
4. Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater. Wan H; Zhang T; Wang J; Rao Z; Zhang Y; Li G; Gu T; Liu H Bioelectrochemistry; 2023 Apr; 150():108367. PubMed ID: 36621048 [TBL] [Abstract][Full Text] [Related]
5. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Yuan SJ; Pehkonen SO Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747 [TBL] [Abstract][Full Text] [Related]
6. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view. Ma Y; Zhang Y; Zhang R; Guan F; Hou B; Duan J Appl Microbiol Biotechnol; 2020 Jan; 104(2):515-525. PubMed ID: 31807887 [TBL] [Abstract][Full Text] [Related]
7. Molecular methods resolve the bacterial composition of natural marine biofilms on galvanically coupled stainless steel cathodes. Oldham AL; Steinberg MK; Duncan KE; Makama Z; Beech I J Ind Microbiol Biotechnol; 2017 Feb; 44(2):167-180. PubMed ID: 28013395 [TBL] [Abstract][Full Text] [Related]
8. Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing. Capão A; Moreira-Filho P; Garcia M; Bitati S; Procópio L Biotechnol Lett; 2020 Aug; 42(8):1431-1448. PubMed ID: 32472186 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution. Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438 [TBL] [Abstract][Full Text] [Related]
10. Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface. Orfei LH; Simison S; Busalmen JP Environ Sci Technol; 2006 Oct; 40(20):6473-8. PubMed ID: 17120583 [TBL] [Abstract][Full Text] [Related]
11. Microbial Corrosion in Orthodontics. Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293 [TBL] [Abstract][Full Text] [Related]
12. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. Lekbach Y; Li Z; Xu D; El Abed S; Dong Y; Liu D; Gu T; Koraichi SI; Yang K; Wang F Bioelectrochemistry; 2019 Aug; 128():193-203. PubMed ID: 31004913 [TBL] [Abstract][Full Text] [Related]
13. A study of bacteria adhesion and microbial corrosion on different stainless steels in environment containing Tran TTT; Kannoorpatti K; Padovan A; Thennadil S R Soc Open Sci; 2021 Jan; 8(1):201577. PubMed ID: 33614090 [TBL] [Abstract][Full Text] [Related]
14. Microbiologically influenced corrosion of stainless steel independent of sulfate-reducing bacteria. Wakai S; Eno N; Mizukami H; Sunaba T; Miyanaga K; Miyano Y Front Microbiol; 2022; 13():982047. PubMed ID: 36312937 [TBL] [Abstract][Full Text] [Related]
15. Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus. Arun D; Vimala R; Devendranath Ramkumar K Bioelectrochemistry; 2020 Oct; 135():107546. PubMed ID: 32413811 [TBL] [Abstract][Full Text] [Related]
16. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. Lopes FA; Morin P; Oliveira R; Melo LF J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232 [TBL] [Abstract][Full Text] [Related]
17. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms. Eashwar M; Subramanian G; Palanichamy S; Rajagopal G; Madhu S; Kamaraj P Biofouling; 2009; 25(3):191-201. PubMed ID: 19169951 [TBL] [Abstract][Full Text] [Related]
18. Investigation of mixed species biofilm on corrosion of X65 steel in seawater environment. Lv M; Du M; Li Z Bioelectrochemistry; 2022 Feb; 143():107951. PubMed ID: 34601262 [TBL] [Abstract][Full Text] [Related]
19. The corrosion of 316L stainless steel induced by methanocossus mariplaudis through indirect electron transfer in seawater. Hou R; Lu S; Chen S; Dou W; Liu G Bioelectrochemistry; 2023 Feb; 149():108310. PubMed ID: 36283192 [TBL] [Abstract][Full Text] [Related]
20. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Dong Y; Jiang B; Xu D; Jiang C; Li Q; Gu T Bioelectrochemistry; 2018 Oct; 123():34-44. PubMed ID: 29723805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]