These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36332310)
41. Bacterial community structure of biofilms on artificial surfaces in an estuary. Jones PR; Cottrell MT; Kirchman DL; Dexter SC Microb Ecol; 2007 Jan; 53(1):153-62. PubMed ID: 17186146 [TBL] [Abstract][Full Text] [Related]
42. Fluctuation in deep groundwater chemistry and microbial community and their impact on corrosion of stainless-steels. Rajala P; Nuppunen-Puputti M; Wheat CG; Carpen L Sci Total Environ; 2022 Jun; 824():153965. PubMed ID: 35182643 [TBL] [Abstract][Full Text] [Related]
43. The enrichment of surface passive film on stainless steel during biofilm development in coastal seawater. Eashwar M; Sreedhar G; Lakshman Kumar A; Hariharasuthan R; Kennedy J Biofouling; 2015; 31(6):511-25. PubMed ID: 26222313 [TBL] [Abstract][Full Text] [Related]
44. Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa. Zhou E; Zhang M; Huang Y; Li H; Wang J; Jiang G; Jiang C; Xu D; Wang Q; Wang F Water Res; 2022 Jul; 220():118634. PubMed ID: 35691192 [TBL] [Abstract][Full Text] [Related]
45. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076 [TBL] [Abstract][Full Text] [Related]
46. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Nan L; Xu D; Gu T; Song X; Yang K Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():228-34. PubMed ID: 25579918 [TBL] [Abstract][Full Text] [Related]
47. Enzymatic approach in microbial-influenced corrosion: a review based on stainless steels in natural waters. Landoulsi J; El Kirat K; Richard C; Féron D; Pulvin S Environ Sci Technol; 2008 Apr; 42(7):2233-42. PubMed ID: 18504948 [TBL] [Abstract][Full Text] [Related]
48. Influence of copper-alloying of austenitic stainless steel on multi-species biofilm development. Kielemoes J; Verstraete W Lett Appl Microbiol; 2001 Aug; 33(2):148-52. PubMed ID: 11472524 [TBL] [Abstract][Full Text] [Related]
49. The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Moura V; Ribeiro I; Moriggi P; Capão A; Salles C; Bitati S; Procópio L Arch Microbiol; 2018 Dec; 200(10):1447-1456. PubMed ID: 30109372 [TBL] [Abstract][Full Text] [Related]
50. Microbial corrosion of DSS 2205 in an acidic chloride environment under continuous flow. Tran TTT; Kannoorpatti K; Padovan A; Thennadil S; Nguyen K PLoS One; 2021; 16(5):e0251524. PubMed ID: 33979409 [TBL] [Abstract][Full Text] [Related]
51. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings. Abdoli L; Suo X; Li H Colloids Surf B Biointerfaces; 2016 Sep; 145():688-694. PubMed ID: 27289310 [TBL] [Abstract][Full Text] [Related]
52. Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration. Brauer JI; Makama Z; Bonifay V; Aydin E; Kaufman ED; Beech IB; Sunner J Biointerphases; 2015 Mar; 10(1):019003. PubMed ID: 25708633 [TBL] [Abstract][Full Text] [Related]
54. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. Bermont-Bouis D; Janvier M; Grimont PA; Dupont I; Vallaeys T J Appl Microbiol; 2007 Jan; 102(1):161-8. PubMed ID: 17184331 [TBL] [Abstract][Full Text] [Related]
55. Microbiologically influenced corrosion of AISI 202 and 316L stainless steels under manganese-oxidizing biofilms. Balakrishnan A; Dhaipule NGK; Philip J 3 Biotech; 2024 Jan; 14(1):12. PubMed ID: 38107030 [TBL] [Abstract][Full Text] [Related]
56. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion. Javed MA; Neil WC; Stoddart PR; Wade SA Biofouling; 2016; 32(1):109-22. PubMed ID: 26785935 [TBL] [Abstract][Full Text] [Related]
57. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. Sun D; Xu D; Yang C; Chen J; Shahzad MB; Sun Z; Zhao J; Gu T; Yang K; Wang G Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():744-50. PubMed ID: 27612768 [TBL] [Abstract][Full Text] [Related]
58. Galvanic corrosion of ferritic stainless steels used for dental magnetic attachments in contact with an iron-platinum magnet. Nakamura K; Takada Y; Yoda M; Kimura K; Okuno O Dent Mater J; 2008 Mar; 27(2):203-10. PubMed ID: 18540393 [TBL] [Abstract][Full Text] [Related]
59. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina. Qian H; Liu S; Wang P; Huang Y; Lou Y; Huang L; Jiang C; Zhang D Bioelectrochemistry; 2020 Dec; 136():107635. PubMed ID: 32866835 [TBL] [Abstract][Full Text] [Related]
60. Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Zhou E; Li F; Zhang D; Xu D; Li Z; Jia R; Jin Y; Song H; Li H; Wang Q; Wang J; Li X; Gu T; Homborg AM; Mol JMC; Smith JA; Wang F; Lovley DR Water Res; 2022 Jul; 219():118553. PubMed ID: 35561622 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]