These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36332571)

  • 21. Hepatic differentiation of human pluripotent stem cells by developmental stage-related metabolomics products.
    Bandi S; Tchaikovskaya T; Gupta S
    Differentiation; 2019; 105():54-70. PubMed ID: 30776728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy.
    Li H; Li D; Ledru N; Xuanyuan Q; Wu H; Asthana A; Byers LN; Tullius SG; Orlando G; Waikar SS; Humphreys BD
    Cell Metab; 2024 May; 36(5):1105-1125.e10. PubMed ID: 38513647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyzing cell-type-specific dynamics of metabolism in kidney repair.
    Wang G; Heijs B; Kostidis S; Mahfouz A; Rietjens RGJ; Bijkerk R; Koudijs A; van der Pluijm LAK; van den Berg CW; Dumas SJ; Carmeliet P; Giera M; van den Berg BM; Rabelink TJ
    Nat Metab; 2022 Sep; 4(9):1109-1118. PubMed ID: 36008550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Making a Kidney Organoid Using the Directed Differentiation of Human Pluripotent Stem Cells.
    Takasato M; Little MH
    Methods Mol Biol; 2017; 1597():195-206. PubMed ID: 28361319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy metabolism in nuclear reprogramming.
    Folmes CD; Nelson TJ; Terzic A
    Biomark Med; 2011 Dec; 5(6):715-29. PubMed ID: 22103608
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    van den Berg CW; Koudijs A; Ritsma L; Rabelink TJ
    J Am Soc Nephrol; 2020 May; 31(5):921-929. PubMed ID: 32354986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy metabolism in the acquisition and maintenance of stemness.
    Folmes CD; Terzic A
    Semin Cell Dev Biol; 2016 Apr; 52():68-75. PubMed ID: 26868758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis.
    Lichner Z; Mac-Way F; Yousef GM
    Eur Urol Focus; 2019 Mar; 5(2):250-261. PubMed ID: 28847686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asynchronous mixing of kidney progenitor cells potentiates nephrogenesis in organoids.
    Kumar Gupta A; Sarkar P; Wertheim JA; Pan X; Carroll TJ; Oxburgh L
    Commun Biol; 2020 May; 3(1):231. PubMed ID: 32393756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Microbial Short-Chain Fatty Acids on CYP3A4-Mediated Metabolic Activation of Human Pluripotent Stem Cell-Derived Liver Organoids.
    Mun SJ; Lee J; Chung KS; Son MY; Son MJ
    Cells; 2021 Jan; 10(1):. PubMed ID: 33440728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of variability in human kidney organoids.
    Phipson B; Er PX; Combes AN; Forbes TA; Howden SE; Zappia L; Yen HJ; Lawlor KT; Hale LJ; Sun J; Wolvetang E; Takasato M; Oshlack A; Little MH
    Nat Methods; 2019 Jan; 16(1):79-87. PubMed ID: 30573816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors, OCT4 and SOX2.
    Montserrat N; Ramírez-Bajo MJ; Xia Y; Sancho-Martinez I; Moya-Rull D; Miquel-Serra L; Yang S; Nivet E; Cortina C; González F; Izpisua Belmonte JC; Campistol JM
    J Biol Chem; 2012 Jul; 287(29):24131-8. PubMed ID: 22613719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generating Kidney Organoids from Human Pluripotent Stem Cells Using Defined Conditions.
    Howden SE; Little MH
    Methods Mol Biol; 2020; 2155():183-192. PubMed ID: 32474877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis.
    Takasato M; Er PX; Chiu HS; Maier B; Baillie GJ; Ferguson C; Parton RG; Wolvetang EJ; Roost MS; Chuva de Sousa Lopes SM; Little MH
    Nature; 2015 Oct; 526(7574):564-8. PubMed ID: 26444236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids.
    Silva AC; Matthys OB; Joy DA; Kauss MA; Natarajan V; Lai MH; Turaga D; Blair AP; Alexanian M; Bruneau BG; McDevitt TC
    Cell Stem Cell; 2021 Dec; 28(12):2137-2152.e6. PubMed ID: 34861147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
    Parikh SS; Blackwell DJ; Gomez-Hurtado N; Frisk M; Wang L; Kim K; Dahl CP; Fiane A; Tønnessen T; Kryshtal DO; Louch WE; Knollmann BC
    Circ Res; 2017 Dec; 121(12):1323-1330. PubMed ID: 28974554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles.
    Logan S; Arzua T; Yan Y; Jiang C; Liu X; Yu LK; Liu QS; Bai X
    Cells; 2020 May; 9(5):. PubMed ID: 32456176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology.
    de Lange WJ; Farrell ET; Kreitzer CR; Jacobs DR; Lang D; Glukhov AV; Ralphe JC
    Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1670-H1686. PubMed ID: 33606581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VPS34-dependent control of apical membrane function of proximal tubule cells and nutrient recovery by the kidney.
    Rinschen MM; Harder JL; Carter-Timofte ME; Zanon Rodriguez L; Mirabelli C; Demir F; Kurmasheva N; Ramakrishnan SK; Kunke M; Tan Y; Billing A; Dahlke E; Larionov AA; Bechtel-Walz W; Aukschun U; Grabbe M; Nielsen R; Christensen EI; Kretzler M; Huber TB; Wobus CE; Olagnier D; Siuzdak G; Grahammer F; Theilig F
    Sci Signal; 2022 Nov; 15(762):eabo7940. PubMed ID: 36445937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial dysfunction increases fatty acid β-oxidation and translates into impaired neuroblast maturation.
    Audano M; Pedretti S; Crestani M; Caruso D; De Fabiani E; Mitro N
    FEBS Lett; 2019 Nov; 593(22):3173-3189. PubMed ID: 31432511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.