These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36332735)

  • 1. Simultaneous removal of carbamazepine and Cd(II) in groundwater by integration of peroxydisulfate oxidation and sulfidogenic process: The bridging role of SO
    Yin W; Xu Y; Chen J; Liu T; Xu Y; Xiao S; Zhang Y; Zhou X
    Chemosphere; 2023 Jan; 311(Pt 1):137069. PubMed ID: 36332735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system in groundwater.
    Li A; Wu Z; Wang T; Hou S; Huang B; Kong X; Li X; Guan Y; Qiu R; Fang J
    J Hazard Mater; 2018 Sep; 357():207-216. PubMed ID: 29890417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment and remediation of metal-contaminated water and groundwater in mining areas by biological sulfidogenic processes: A review.
    Li Y; Zhao Q; Liu M; Guo J; Xia J; Wang J; Qiu Y; Zou J; He W; Jiang F
    J Hazard Mater; 2023 Feb; 443(Pt B):130377. PubMed ID: 36444068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of •SO
    Yu X; Sun J; Li G; Huang Y; Li Y; Xia D; Jiang F
    Water Res; 2020 May; 174():115622. PubMed ID: 32145554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridia initiate heavy metal bioremoval in mixed sulfidogenic cultures.
    Alexandrino M; Costa R; Canário AV; Costa MC
    Environ Sci Technol; 2014 Mar; 48(6):3378-85. PubMed ID: 24568215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The graceful art, significant function and wide application behavior of ultrasound research and understanding in carbamazepine (CBZ) enhanced removal and degradation by Fe
    Wei W; Zhou D; Feng L; Li X; Hu L; Zheng H; Wang Y
    Chemosphere; 2021 Sep; 278():130368. PubMed ID: 33838417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of heavy metal removal performance of sulfate-reducing bacteria using machine learning.
    Xiong B; Chen K; Ke C; Zhao S; Dang Z; Guo C
    Bioresour Technol; 2024 Apr; 397():130501. PubMed ID: 38417462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization.
    Kiran MG; Pakshirajan K; Das G
    J Hazard Mater; 2017 Feb; 324(Pt A):62-70. PubMed ID: 26847522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrous sulfide nanoparticles can be biosynthesized by sulfate-reducing bacteria: Synthesis, characterization and removal of heavy metals from acid mine drainage.
    Chen J; Gan L; Han Y; Owens G; Chen Z
    J Hazard Mater; 2024 Mar; 466():133622. PubMed ID: 38280317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration.
    Ontiveros-Valencia A; Tang Y; Krajmalnik-Brown R; Rittmann BE
    Water Res; 2014 May; 55():215-24. PubMed ID: 24607522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis.
    Sun R; Li Y; Lin N; Ou C; Wang X; Zhang L; Jiang F
    Environ Int; 2020 Mar; 136():105457. PubMed ID: 31926438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The patterns of bacterial community and relationships between sulfate-reducing bacteria and hydrochemistry in sulfate-polluted groundwater of Baogang rare earth tailings.
    An X; Baker P; Li H; Su J; Yu C; Cai C
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21766-21779. PubMed ID: 27522211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors.
    Song H; Yan L; Ma J; Jiang J; Cai G; Zhang W; Zhang Z; Zhang J; Yang T
    Water Res; 2017 Jun; 116():182-193. PubMed ID: 28340416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO).
    Ji Y; Wang L; Jiang M; Lu J; Ferronato C; Chovelon JM
    Water Res; 2017 Oct; 123():249-257. PubMed ID: 28672209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenite removal without thioarsenite formation in a sulfidogenic system driven by sulfur reducing bacteria under acidic conditions.
    Sun J; Hong Y; Guo J; Yang J; Huang D; Lin Z; Jiang F
    Water Res; 2019 Mar; 151():362-370. PubMed ID: 30616048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic activation of peroxydisulfate with magnetite and copper ion at neutral condition.
    Chen J; Zhou X; Zhu Y; Zhang Y; Huang CH
    Water Res; 2020 Nov; 186():116371. PubMed ID: 32911266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Critical Review on Removal of Gaseous Pollutants Using Sulfate Radical-based Advanced Oxidation Technologies.
    Liu Y; Liu L; Wang Y
    Environ Sci Technol; 2021 Jul; 55(14):9691-9710. PubMed ID: 34191483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer.
    Zhang P; He Z; Van Nostrand JD; Qin Y; Deng Y; Wu L; Tu Q; Wang J; Schadt CW; W Fields M; Hazen TC; Arkin AP; Stahl DA; Zhou J
    Environ Sci Technol; 2017 Apr; 51(7):3609-3620. PubMed ID: 28300407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.