These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36332736)

  • 21. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.
    Wang L; Yang X; Wang Q; Zeng Y; Ding L; Jiang W
    J Environ Sci (China); 2017 Jan; 51():248-255. PubMed ID: 28115136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.
    Saleh NB; Pfefferle LD; Elimelech M
    Environ Sci Technol; 2008 Nov; 42(21):7963-9. PubMed ID: 19031888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe
    Wang H; Zhao X; Han X; Tang Z; Liu S; Guo W; Deng C; Guo Q; Wang H; Wu F; Meng X; Giesy JP
    Sci Total Environ; 2017 May; 586():817-826. PubMed ID: 28202242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles.
    Wang Z; Quik JTK; Song L; Wouterse M; Peijnenburg WJGM
    Environ Toxicol Chem; 2018 Apr; 37(4):1024-1031. PubMed ID: 29240259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a better understanding of the aggregation mechanisms of iron (hydr)oxide nanoparticles interacting with extracellular polymeric substances: Role of pH and electrolyte solution.
    Lin D; Cai P; Peacock CL; Wu Y; Gao C; Peng W; Huang Q; Liang W
    Sci Total Environ; 2018 Dec; 645():372-379. PubMed ID: 30029116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
    Ghosh S; Mashayekhi H; Pan B; Bhowmik P; Xing B
    Langmuir; 2008 Nov; 24(21):12385-91. PubMed ID: 18823134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.
    Lee J; Bartelt-Hunt SL; Li Y; Gilrein EJ
    Chemosphere; 2016 Jul; 154():187-193. PubMed ID: 27045636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggregation behavior of TiO
    Ren M; Horn H; Frimmel FH
    Water Res; 2017 Oct; 123():678-686. PubMed ID: 28710984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter.
    Akaighe N; Depner SW; Banerjee S; Sharma VK; Sohn M
    Sci Total Environ; 2012 Dec; 441():277-89. PubMed ID: 23164532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined effects of particle size and humic acid corona on the aggregation kinetics of nanoplastics in aquatic environments.
    Sun H; Jiao R; Yu J; Wang D
    Sci Total Environ; 2023 Nov; 901():165987. PubMed ID: 37536605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comprehensive estimate of the aggregation and transport of nSiO
    Ghosh D; Das S; Gahlot VK; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A
    Environ Sci Process Impacts; 2022 May; 24(5):675-688. PubMed ID: 35388853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endogenous release of metals with dissolved organic carbon from biochar: Effects of pyrolysis temperature, particle size, and solution chemistry.
    Hameed R; Cheng L; Yang K; Fang J; Lin D
    Environ Pollut; 2019 Dec; 255(Pt 2):113253. PubMed ID: 31627172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The suspension stability of nanoplastics in aquatic environments revealed using meta-analysis and machine learning.
    Li X; Tian Z; Kong Y; Cao X; Liu N; Zhang T; Xiao Z; Wang Z
    J Hazard Mater; 2024 Jun; 471():134426. PubMed ID: 38688220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions of CeO
    Li X; He E; Zhang M; Peijnenburg WJGM; Liu Y; Song L; Cao X; Zhao L; Qiu H
    J Hazard Mater; 2020 Mar; 386():121973. PubMed ID: 31884366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca(2.).
    Miao L; Wang C; Hou J; Wang P; Ao Y; Li Y; Lv B; Yang Y; You G; Xu Y
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11611-9. PubMed ID: 26931664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of dissolved black carbon on the aggregation and deposition of polystyrene nanoplastics: Comparison with dissolved humic acid.
    Xu Y; Ou Q; He Q; Wu Z; Ma J; Huangfu X
    Water Res; 2021 May; 196():117054. PubMed ID: 33770677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reciprocal effects of NOM and solution electrolyte ions on aggregation of ferrihydrite nanoparticles.
    Li Z; Hu Y; Chen Y; Fang S; Liu Y; Tang W; Chen J
    Chemosphere; 2023 Aug; 332():138918. PubMed ID: 37178934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggregation and Colloidal Stability of Commercially Available Al₂O₃ Nanoparticles in Aqueous Environments.
    Mui J; Ngo J; Kim B
    Nanomaterials (Basel); 2016 May; 6(5):. PubMed ID: 28335218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.