These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36332765)

  • 41. Decoding the role of hypothetical protein All3255 of Anabaena PCC7120 in heavy metal stress management in Escherichia coli.
    Singh PK; Tang M; Kumar S; Shrivastava AK
    Arch Microbiol; 2018 Apr; 200(3):463-471. PubMed ID: 29189890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of growth temperature on biosynthesis and accumulation of carotenoids in cyanobacterium Anabaena sp. PCC 7120 under diazotrophic conditions.
    Kłodawska K; Bujas A; Turos-Cabal M; Żbik P; Fu P; Malec P
    Microbiol Res; 2019 Sep; 226():34-40. PubMed ID: 31284942
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Absence of Thioredoxin m1 and Thioredoxin C in Anabaena sp. PCC 7120 Leads to Oxidative Stress.
    Deschoenmaeker F; Mihara S; Niwa T; Taguchi H; Wakabayashi KI; Hisabori T
    Plant Cell Physiol; 2018 Dec; 59(12):2432-2441. PubMed ID: 30101290
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of the all1549 (ana-rsh) gene, a relA/spoT homolog, of the Cyanobacterium Anabaena sp. PCC7120.
    Ning D; Qian Y; Miao X; Wen C
    Curr Microbiol; 2011 Jun; 62(6):1767-73. PubMed ID: 21461674
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular characterization of Alr1105 a novel arsenate reductase of the diazotrophic cyanobacterium Anabaena sp. PCC7120 and decoding its role in abiotic stress management in Escherichia coli.
    Pandey S; Shrivastava AK; Rai R; Rai LC
    Plant Mol Biol; 2013 Nov; 83(4-5):417-32. PubMed ID: 23836391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gene expression in the cyanobacterium Anabaena sp. PCC7120 under desiccation.
    Katoh H; Asthana RK; Ohmori M
    Microb Ecol; 2004 Feb; 47(2):164-74. PubMed ID: 14749909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unravelling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis.
    González A; Bes MT; Peleato ML; Fillat MF
    J Proteomics; 2011 May; 74(5):660-71. PubMed ID: 21315197
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physiological and Proteomic Studies of the Cyanobacterium Anabaena sp. Acclimated to Desiccation Stress.
    Yadav RK; Tripathi K; Varghese E; Abraham G
    Curr Microbiol; 2021 Jun; 78(6):2429-2439. PubMed ID: 33983480
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N(2)-fixing Anabaena spp.
    Agrawal C; Sen S; Singh S; Rai S; Singh PK; Singh VK; Rai LC
    J Proteomics; 2014 Jan; 96():271-90. PubMed ID: 24291601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of genes controlled by the manganese response regulator, ManR, in the cyanobacterium, Anabaena sp. PCC 7120.
    Huang W; Wu QY
    Biotechnol Lett; 2004 Sep; 26(18):1397-401. PubMed ID: 15604770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative proteomics of oxidative stress response in three cyanobacterial strains native to Indian paddy fields.
    Panda B; Basu B; Rajaram H; Apte SK
    J Proteomics; 2015 Sep; 127(Pt A):152-60. PubMed ID: 26013413
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational analysis of LexA regulons in Cyanobacteria.
    Li S; Xu M; Su Z
    BMC Genomics; 2010 Sep; 11():527. PubMed ID: 20920248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. cyAbrB Transcriptional Regulators as Safety Devices To Inhibit Heterocyst Differentiation in
    Higo A; Nishiyama E; Nakamura K; Hihara Y; Ehira S
    J Bacteriol; 2019 Sep; 201(17):. PubMed ID: 31085690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteomics analysis reveals several metabolic alterations in cyanobacterium Anabaena sp. NC-K1 in response to alpha-cypermethrin exposure.
    Chanu NK; Mandal MK; Srivastava A; Chaurasia N
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19762-19777. PubMed ID: 34718975
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heterocyst Septa Contain Large Nanopores That Are Influenced by the Fra Proteins in the Filamentous Cyanobacterium
    Arévalo S; Flores E
    J Bacteriol; 2021 Jun; 203(13):e0008121. PubMed ID: 33846119
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Responses of Anabaena sp. PCC7120 to lindane: Physiological effects and differential expression of potential lin genes.
    Guío J; Fillat MF; Peleato ML; Sevilla E
    Microbiologyopen; 2023 Jun; 12(3):e1355. PubMed ID: 37379427
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes.
    González A; Angarica VE; Sancho J; Fillat MF
    Nucleic Acids Res; 2014 Apr; 42(8):4833-46. PubMed ID: 24503250
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The alr2505 (osiS) gene from Anabaena sp. strain PCC7120 encodes a cysteine desulfurase induced by oxidative stress.
    Ruiz M; Bettache A; Janicki A; Vinella D; Zhang CC; Latifi A
    FEBS J; 2010 Sep; 277(18):3715-25. PubMed ID: 20681987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. PCC7120.
    Torrecilla I; Leganés F; Bonilla I; Fernández-Piñas F
    Microbiology (Reading); 2004 Nov; 150(Pt 11):3731-3739. PubMed ID: 15528659
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Double Crossover Approach to Inactivate Target Gene in Cyanobacteria.
    Gibbons J; Gu L; Zhou R
    Methods Mol Biol; 2022; 2489():299-313. PubMed ID: 35524057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.