These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36333368)

  • 21. Reconfigurable vortex beam generator based on the Fourier transformation principle.
    Liu A; Zou CL; Ren X; He W; Wu M; Guo G; Wang Q
    Opt Express; 2018 Nov; 26(24):31880-31888. PubMed ID: 30650767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light scattering of a Laguerre-Gaussian vortex beam by a chiral sphere.
    Qu T; Wu ZS; Shang QC; Li ZJ
    J Opt Soc Am A Opt Image Sci Vis; 2016 Apr; 33(4):475-82. PubMed ID: 27140753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical Study on Generation of Multidimensional Focused and Vector Vortex Beams via All-Dielectric Spin-Multiplexed Metasurface.
    Liu Y; Chen L; Zhou C; Guo K; Wang X; Hong Y; Yang X; Wei Z; Liu H
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Gaussian pulsed beam decomposition in modeling optical systems with diffraction grating.
    Worku NG; Gross H
    J Opt Soc Am A Opt Image Sci Vis; 2020 May; 37(5):797-806. PubMed ID: 32400713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses.
    Zhang Q; Takahashi EJ; Mücke OD; Lu P; Midorikawa K
    Opt Express; 2011 Apr; 19(8):7190-212. PubMed ID: 21503032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of an asymmetric optical vortex array with tunable singularity distribution.
    Zeng R; Yang Y
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):313-320. PubMed ID: 33690459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields.
    Vanacore GM; Berruto G; Madan I; Pomarico E; Biagioni P; Lamb RJ; McGrouther D; Reinhardt O; Kaminer I; Barwick B; Larocque H; Grillo V; Karimi E; García de Abajo FJ; Carbone F
    Nat Mater; 2019 Jun; 18(6):573-579. PubMed ID: 31061485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photonic-assisted chirped microwave pulses generation with a flexible and fine parameter manipulation.
    Liu X; Pan W; Zou X; Yan L; Luo B; Zheng D; Ye J; Lu B
    Opt Express; 2016 Aug; 24(17):19592-9. PubMed ID: 27557237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polarization-controllable perfect vortex beam by a dielectric metasurface.
    Xie J; Guo H; Zhuang S; Hu J
    Opt Express; 2021 Feb; 29(3):3081-3089. PubMed ID: 33770914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chirped-pulse-amplification seed source through direct phase modulation.
    Xin R; Zuegel JD
    Opt Express; 2018 Aug; 26(16):21332-21345. PubMed ID: 30119436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast noncollinear optical parametric chirped pulse amplification in KTiOAsO4.
    Kraemer D; Hua R; Cowan ML; Franjic K; Miller RJ
    Opt Lett; 2006 Apr; 31(7):981-3. PubMed ID: 16599231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing.
    Kida Y; Liu J; Teramoto T; Kobayashi T
    Opt Lett; 2010 Jun; 35(11):1807-9. PubMed ID: 20517423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air.
    Polynkin P; Kolesik M; Moloney J
    Opt Express; 2009 Jan; 17(2):575-84. PubMed ID: 19158870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of the chirp characteristics of linearly chirped pulses by a frequency domain interference method.
    Fan W; Zhu B; Wu Y; Qian F; Shui M; Du S; Zhang B; Wu Y; Xin J; Zhao Z; Cao L; Wang Y; Gu Y
    Opt Express; 2013 Jun; 21(11):13062-7. PubMed ID: 23736559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weakly chirped pulses in frequency resolved coherent spectroscopy.
    Christensson N; Avlasevich Y; Yartsev A; Müllen K; Pascher T; Pullerits T
    J Chem Phys; 2010 May; 132(17):174508. PubMed ID: 20459175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system.
    Hong KH; Siddiqui A; Moses J; Gopinath J; Hybl J; Ilday FO; Fan TY; Kärtner FX
    Opt Lett; 2008 Nov; 33(21):2473-5. PubMed ID: 18978891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chirped optical X-shaped pulses in material media.
    Zamboni-Rached M; Hernández-Figueroa HE; Recami E
    J Opt Soc Am A Opt Image Sci Vis; 2004 Dec; 21(12):2455-63. PubMed ID: 15603085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the orbital angular momentum of intense vortex pulses with strong-field ionization.
    Fang Y; Guo Z; Ge P; Dou Y; Deng Y; Gong Q; Liu Y
    Light Sci Appl; 2022 Feb; 11(1):34. PubMed ID: 35132069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast nonlinear spectroscopy with chirped optical pulses.
    Nibbering ET; Wiersma DA; Duppen K
    Phys Rev Lett; 1992 Jan; 68(4):514-517. PubMed ID: 10045916
    [No Abstract]   [Full Text] [Related]  

  • 40. Generation of optical vortex dipole from superposition of two transversely scaled Gaussian beams.
    Naik DN; Pradeep Chakravarthy T; Viswanathan NK
    Appl Opt; 2016 Apr; 55(12):B91-7. PubMed ID: 27140138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.